Влияние эксплуатационных и конструктивных факторов на коэффициент сопротивления качению
На величину коэффициента сопротивления качению в общем случае оказывают влияние следующие эксплуатационные и конструктивные факторы: тип и состояние дороги, скорость движения, давление воздуха в шинах, вес, приходящийся на колесо, размеры колеса, конструктивные особенности шины, величина передаваемого через шину момента.
На дорогах с твердым покрытием потеря энергии на качение колеса в основном определяется деформациями шины. На коэффициент сопротивления качения в этом случае существенное влияние оказывают динамические нагрузки, возникающие в результате движения колеса по неровностям дороги. Чем больше таких неровностей и чем больше вызываемые ими динамические нагрузки, тем больше коэффициент сопротивления качению. При движении по абсолютно гладкой асфальтовой, бетонной или асфальтобетонной дороге для современных шин можно считать коэффициент сопротивления качению равным f = 0,005…0,01. При движении по реальным дорогам того же типа увеличение коэффициента сопротивления качению, связанное с наличием неровностей, зависит от степени ровности дороги, скорости движения, а также от качества подвески автомобиля и конструкции его ходовой части.
Профессор А. К. Бируля предложил следующую формулу для оценки влияния состояния дорожного покрытия на коэффициент сопротивления качению:
, (21)
где fp – коэффициент сопротивления качению на ровной дороге (fp=0,005…0,01);
λn – коэффициент, зависящий от конструкции ходовой части автомобиля;
Sn – коэффициент ровности покрытия.
Коэффициенты λn и Sn определяются опытным путем. В среднем можно считать для легковых автомобилей λn=4, для грузовых автомобилей λn=5,5. Для асфальтобетонного шоссе в отличном состоянии Sn =50…75, для того же шоссе в неудовлетворительном состоянии Sn >300.
Для деформируемых дорог (грунтовые дороги, песок, снег и др.) коэффициент сопротивления качению в общем случае определяется деформациями, как шины, так и дороги. Величина коэффициента f на таких дорогах сильно зависит как от типа шин, так и от состояния дороги. Средними значениями коэффициента сопротивления на дорогах такого типа можно считать:
грунтовая дорога сухая, укатанная f = 0,025…0,05,
грунтовая дорога после дождя f = 0,05…0,15,
песок f = 0,10…0,30.
С увеличением скорости движения коэффициент сопротивления движению, как правило, увеличивается. При малых и средних скоростях движения это увеличение не очень существенно, если дорога достаточно ровная и давление воздуха в шинах близко к номинальному.
На неровных дорогах, как видно из формулы (21), даже при средних скоростях движения коэффициент f может возрастать довольно сильно с увеличением Va.
Начиная с некоторого значения скорости тем меньшего, чем меньше давление воздуха в шине, коэффициент сопротивления качению начинает быстро расти (рис. 9). При номинальном давления воздуха в шине быстрый рост сопротивления качению начинается при скоростях 20…25 м/с (70…90 км/ч).
Рис. 9. Зависимость коэффициента сопротивления качению от скорости движения автомобиля
Имеется ряд эмпирических формул, позволяющих приближенно подсчитать коэффициенты сопротивления качению при различных скоростях движения.
Достаточно близкие значения коэффициента f в пределах изменения скоростей 15…40 м/с (50…150 км/ч) дает эмпирическая формула
. (22)
где fс – коэффициент сопротивления качению при малой скорости (fc=0,015…0,02);
Va – скорость автомобиля м/с.
При больших скоростях движения эта формула дает заниженные результаты.
Изменение давления воздуха в шине по-разному влияет на величину коэффициента сопротивления качению на различных дорогах.
На дорогах с твердым покрытием коэффициент f увеличивается с увеличением давления воздуха в шине, достигая минимального значения при давлении, близком к рекомендованному заводом для данной шины. При чрезмерном увеличении давления воздуха возрастают динамические нагрузки, возникающие в результате взаимодействия колеса с неровностями дороги, что может привести к некоторому возрастанию коэффициента f. Чем ровнее дорога, тем большему давлению воздуха соответствует минимум коэффициента f.
Рис. 10. Зависимость коэффициента сопротивления качению от внутреннего давления воздуха
При движении по деформируемым дорогам уменьшение давления воздуха увеличивает потери, связанные с деформацией шины. Одновременно с этим уменьшаются потери, связанные с деформацией дороги. Поэтому можно подобрать такое давление воздуха (обычно меньше давления, рекомендуемого для движения по дорогам с твердым покрытием), при котором сопротивление качению будет минимальным (рис. 10). Это оптимальное давление воздуха в шине тем меньше, чем больше деформируемость дорожного полотна.
Такие зависимости коэффициента сопротивления качению от давления воздуха используются для повышения проходимости автомобилей, снабженных центральной системой давления воздуха в шинах.
Вес, приходящийся на колесо, почти не оказывает влияния на коэффициент сопротивления качению по дорогам с твердым покрытием, но значительно увеличивает сопротивление качению на деформируемых дорогах.
На дорогах с твердым покрытием коэффициент f мало зависит от размеров колеса. На деформируемых дорогах коэффициент f уменьшается с увеличением размеров шины, особенно диаметра колеса.
Из конструктивных параметров шины основное влияние на коэффициент сопротивления качению оказывают рисунок протектора, число слоев корда, конструкция каркаса. На дорогах с твердым покрытием минимальное сопротивление качению имеют шины с гладким протектором. Применение в этих условиях шин повышенной проходимости с сильно расчлененный протектором увеличивает коэффициент сопротивления качению на 20…25%. Увеличение числа слоев корда увеличивает коэффициент f . Значительно (на 10…15%) уменьшается коэффициент f у шин с радиальным расположением нитей корда (шины типа ρ).
Увеличение передаваемого через колесо момента увеличивает сопротивление качению. Это объясняется увеличением потерь на проскальзывание элементов контакта шин с дорогой. Зависимость коэффициента f от передаваемого через колесо крутящего момента возрастает с увеличением последнего.
- Автомобили ч. 2.
- Эксплуатационные свойства
- Учебное пособие
- Санкт-Петербург
- Оглавление:
- Глава 1 Эксплуатационные свойства автомобиля 6
- Глава 2 Скоростные свойства ( тяговая динамика) автомобиля 13
- Глава 3 Тормозные свойства автомобиля 74
- 3.1. Общие положения 74
- 3.2. Показатели, измерители и нормативы тормозных свойств автомобиля 76
- Глава 4 Топливная экономичность автомобиля 103
- 4.1. Общие положения 103
- Глава 5 Особенности скоростных и топливно-экономических свойств автомобилей, снабженных гидропередачей 141
- Глава 6 Тяговый расчет автомобиля 159
- Глава 7 Управляемость и устойчивость автомобиля 169
- Глава 8 Плавность хода автомобиля 225
- Глава 9 Проходимость автомобиля 238
- Введение
- Глава 1 Содержание курса «Эксплуатационные свойства автомобиля»
- 1.1. Основные эксплуатационные свойства автомобиля, изучаемые в данном курсе
- 1.2.Условия эксплуатации автомобилей
- 1.3. Развитие теории эксплуатационных свойств автомобиля
- Глава 2 скоростные свойства (тяговая динамика) автомобиля
- 2.1. Общие положения
- 2.2.Оценочные параметры скоростных свойств
- 2.3. Силы, действующие на автомобиль
- Характеристики автомобильного двигателя
- Мощность, подводимая к колесам
- 2.4. Кинематика и динамика автомобильного колеса
- Скорость и ускорение автомобиля
- Динамика автомобильного колеса
- Сила сопротивления качению колеса
- Влияние эксплуатационных и конструктивных факторов на коэффициент сопротивления качению
- Коэффициент сцепления колеса с дорогой
- 2.5. Силы и мощности сопротивления движению автомобиля. Силы и мощности сопротивления воздуха.
- Сила сопротивления подъему. Мощность сопротивления подъему
- 2.6. Уравнение движения автомобиля
- 2.7. Графические способы решения уравнения силового баланса автомобиля
- График силового баланса автомобиля (тяговая диаграмма)
- Динамическая характеристика автомобиля
- Максимальная скорость движения на дороге с заданным ψ
- Порядок построения динамического паспорта
- Порядок построения графика контроля буксования
- 2.8. Приемистость автомобиля
- Порядок построения графика ускорений
- Задача.
- 2.9. Определение нормальных реакций, действующих на колеса передней и задней осей
- 2.10. Мощностной баланс. График мощностного баланса
- Порядок построения мощностного баланса автомобиля
- Г лава 3 тормозные свойства автомобиля
- 3.1. Общие положения
- 3.2. Показатели, измерители и нормативы тормозных свойств автомобиля
- Нормативы эффективности торможения атс рабочей тормозной системой при проверках в дорожных условиях
- Нормативы эффективности торможения атс запасной тормозной системой при проверках в дорожных условиях
- Нормативы эффективности торможения атс рабочей тормозной системой при проверках на стендах
- 1.3.Уравнение движения автомобиля при торможении
- Аварийное торможение (торможение при полном использовании сил сцепления)
- Служебное торможение
- Распределение тормозных сил между осями автомобиля
- Регулирование тормозных моментов на колесах атс. Регуляторы.
- Антиблокировочные системы
- Г лава 4 топливная экономичность автомобиля
- 4.1. Общие положения
- 4.2. Основные понятия и определения
- 4.3. Измерители и показатели топливной экономичности. Нормы расхода топлива
- 4.4. Влияние конструктивных и эксплуатационных факторов на топливную экономичность автомобиля
- Влияние условий эксплуатации автомобиля на расход топлива
- 4. 5. Топливно-экономическая характеристика автомобиля
- 4.6. Уравнение расхода топлива
- Порядок построения топливно-экономической характеристики автомобиля по методу и. С. Шлиппе
- Глава 5 особенности тяговых и топливно-экономических свойств автомобилей, снабженных гидропередачей
- 5.1. Исходные характеристики гидропередач
- 5.2. Совместная работа двигателя с гидропередачами
- 5.3. Методика построения тяговой диаграммы автомобиля с гидропередачей. Автомобиль c непрозрачным гидротрансформатором
- Автомобиль с прозрачным гидротрансформатором
- 5.4. Особенности тяговой диаграммы автомобилей с гидропередачей по сравнению с автомобилями, снабженными ступенчатой механической коробкой передач
- 5.5. Динамическая характеристика и параметры
- 5.6. Топливно-экономическая характеристика автомобиля с гидропередачей
- 5.7. Способы улучшения тяговых свойств и топливной экономичности автомобилей с гидропередачами Применение блокируемых гидротрансформаторов
- Применение комплексных гидротрансформаторов
- Применение гидромеханической коробки передач
- Глава 6 тяговый расчет автомобиля
- 6.1. Задачи тягового расчета
- 6. 2. Подбор внешней характеристики двигателя
- 6.3. Выбор передаточных чисел трансмиссии
- Глава 7 управляемость и устойчивость автомобиля
- 7. 1 Основные понятия и определения
- Относительная длина криволинейных участков на дорогах различных категорий, %
- 7.2. Оценочные показатели управляемости и устойчивости
- Кинематика поворота
- Качение колеса при действии на него боковых сил. Понятие об уводе эластичного колеса
- Радиус поборота и угловая скорость поворота
- 7.4. Силы, действующие на автомобиль при его повороте в общем случае движения
- 7.5. Распределение поперечной составляющей силы инерции между осями автомобиля
- 7.6. Поперечная устойчивость автомобиля на горизонтальной дороге
- Критические скорости автомобиля по боковому скольжению
- Критическая скорость автомобиля по опрокидыванию
- 7.7. Поперечная устойчивость автомобиля на виражах
- 7. 8. Критические углы по устойчивости автомобиля на дороге с поперечным уклоном (критический угол косогора)
- 7.9. Коэффициент поперечной устойчивости автомобиля
- 7.10. Колебания управляемых колес относительно шкворней
- Колебания, вызываемые неуравновешенностью управляемых колес
- Колебания, вызываемые особенностями передней подвески и рулевого управления
- Автоколебания управляемых колес (шимми)
- Стабилизация управляемых колес
- 7. 11. Устойчивость при торможении автомобиля.
- Глава 8 плавность хода автомобиля
- 8.1. Измерители и показатели плавности хода автомобиля
- 8.2. Автомобиль – колебательная система
- 8.3. Свободные колебания без затухания
- Свободные колебания с учетом неподрессоренных масс
- 8.4. Свободные колебания с учетом затухания
- Глава 9 проходимость автомобиля
- 9.1. Основные положения
- Классификация препятствий. Параметры сравнительной оценки проходимости
- 9.2. Профильная проходимость
- 9.3. Опорно-сцепная проходимость
- 9.4. Влияние конструктивных параметров автомобиля и эксплуатационных факторов на проходимость
- 1. Сила внутреннего сцепления частиц грунта
- Преодоление порогов и препятствий
- 2. Преодоление рва автомобильным колесом
- Оценка профильной проходимости
- 3.Преодоление ледяных переправ
- Топливно-экономические показатели проходимости:
- Список литературы: