Приёмистость автомобиля
Под приёмистостью автомобиля понимают его способность быстро увеличивать скорость движения. Время равномерного движения автомобиля обычно невелико по сравнению с общим временем его работы. Так, например, при эксплуатации в городах автомобили движутся равномерно всего лишь 15-25% времени. От 30 до 45% времени приходится на ускоренное движение и 30-40% на движение накатом и торможением. Оценочными параметрами динамичности автомобиля при разгоне являются: максимально возможное ускорение; время разгона; путь разгона.
Максимально возможное ускорение
Ускорение автомобиля j определяется по формуле:
,
где δ – коэффициент учёта вращающихся масс.
При неизвестных конструктивных параметрах двигателя и трансмиссии коэффициент δ определяется по формуле:
g– ускорение свободного падения
ψ– суммарный коэффициент сопротивления дороги
Результаты расчётов сводятся в таблицу 8: Табл. 8
V1,м/с |
|
|
|
|
|
|
|
|
|
|
|
V2,м/с |
|
|
|
|
|
|
|
|
|
|
|
V3,м/с |
|
|
|
|
|
|
|
|
|
|
|
V4,м/с |
|
|
|
|
|
|
|
|
|
|
|
J1 |
|
|
|
|
|
|
|
|
|
|
|
J2 |
|
|
|
|
|
|
|
|
|
|
|
J3 |
|
|
|
|
|
|
|
|
|
|
|
J4 |
|
|
|
|
|
|
|
|
|
|
|
Внешний вид графика ускорений автомобиля представлен на рис. 9:
Рис. 9
Время и путь разгона автомобиля
Для определения пути и времени разгона кривую ускорений на каждой передаче разбивают на интервалы и считают, что в каждом интервале скоростей автомобиль разгоняется с постоянным ускорением ,
где и - ускорение соответственно в начале и конце интервала скоростей, м/с2.
Для повышения точности расчёта, интервал скоростей берут равным 0,5-1 м/с на первой передаче, 2-3 м/с на промежуточных и 3-5 м/с на высшей. При изменении скорости от V1 до V2 среднее ускорение . Следовательно, время разгона в том же интервале скоростей
Общее время разгона от минимальной устойчивой скорости Vmin до конечной
По значениям t, определённым для различных скоростей, строят кривую времени разгона как на какой-либо одной передаче, так и при движении с переходом от любой низшей передачи к любой высшей. В последнем случае необходимо учитывать, при каких скоростях происходит переключение с более низкой передачи на более высокую. В реальных условиях момент перехода определяется водителем и может быть различным. Время разгона будет минимальным, если переключение передач происходит при скоростях, соответствующих пересечению кривых J=f(V). Если при наличии ограничителя (регулятора) в пределах ограничиваемых им частот вращения, такое переключение невозможно, то переключение должно происходить при скоростях, соответствующих номинальным частотам вращения. При отсутствии регулятора, расчёт времени разгона проводят до скорости V=0,95Vmax, а при наличии – до скорости, соответствующей началу работы регулятора. В момент переключения передач происходит разрыв потока мощности от двигателя к ведущим колёсам, в результате чего в течение некоторого времени происходит замедление скорости движения за счёт действия на автомобиль сил сопротивления. Время tП переключения передач зависит от конструктивных особенностей автомобиля и от квалификации водителя. Обычно tП = 0,5 сек.
Величину ∆VП уменьшения скорости автомобиля во время переключения передач можно определить по формуле:
При расчёте пути разгона считают, что в каждом интервале скоростей автомобиль движется равномерно со средней скоростью Vср = 0,5·(V1 + V2). Приращение пути в каждом интервале скоростей .
Складывая полученные значения получают суммарный путь разгона SP, начиная с той же скорости, с которой рассчитывали время разгона. Путь SП пройденный автомобилем за время переключения передач, определяют по формуле:
,
где VП – средняя скорость автомобиля за время переключения передач, м/с;
VН – начальная скорость при переключении передач, м/с.
Обычно расчёт времени и пути разгона легкового автомобиля производят до скорости 100км/ч. По результатам расчётов строятся графики зависимости времени и пути разгона от скорости автомобиля t=f(V), и S=f(V) по точкам, соответствующим концам интервалов скоростей. Расчёты по определению значений представлены в таблице 9:
Табл.9
№ пер. | V1 | V2 | ∆Vai | Vср | J1 | J2 | Jср | ∆ti | τ | ∆Si | S |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
| |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
| |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
Согласно с общими техническими требованиями путь разгона до Vтах не должен превышать 2500м и время разгона 150с. Из расчёта мы можем видеть, что время и путь разгона соответствуют нормам.
График времени разгона автомобиля представлен на рис. 10:
Рис. 10
График пути разгона автомобиля представлен на рис. 11:
Рис. 11
Путевой расход топлива автомобиля
Комплексным измерителем топливной экономичности автомобиля является топливно-экономическая характеристика, представляющая собой график зависимости путевого расхода топлива QП от скорости V установившегося движения автомобиля с полной загрузкой по дорогам с различными коэффициентами дорожного сопротивления ψ. Она может быть построена либо по результатам стендовых или ходовых испытаний автомобиля, либо расчётным путём.
Путевой расхода топлива QП с точностью, достаточной для приближённой оценки топливной экономичности автомобиля, может быть определён из выражения:
,
где ρТ – плотность топлива, кг/л.
Для построения топливно-экономической характеристики необходимо задаться несколькими значениями п и для принятых передачи КП и дорожного сопротивления ψ найти силы сопротивления движению, а по экономической характеристике – значение qe. В случае, когда экономическая характеристика двигателя отсутствует, удельные расходы топлива находят по приближённой методике с использованием коэффициентов Кп и КN по формуле:
,
где Кп – коэффициент, учитывающий зависимость удельного расхода топлива от частоты вращения коленчатого вала двигателя;
КN – коэффициент, учитывающий зависимость удельного расхода топлива от степени использования мощности двигателя;
qEN – эффективный удельный расход топлива при максимальной мощности двигателя, г/(кВт·ч). ,
где qmin – минимальный удельный расход топлива
Коэффициенты могут быть найдены по формулам:
,
где U – степень использования мощности, равная отношению мощности, затраченной на преодоление сопротивления движению автомобиля к тяговой мощности:
Таким образом, окончательная формула для расчёта топливно-экономической характеристики двигателя имеет вид:
.
Результаты расчётов сведены в таблицу 10: Табл. 10
w |
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
V |
|
|
|
|
|
|
|
Кп |
|
|
|
|
|
|
|
КN |
|
|
|
|
|
|
|
Ne |
|
|
|
|
|
|
|
N |
|
|
|
|
|
|
|
U |
|
|
|
|
|
|
|
Q |
|
|
|
|
|
|
|
Топливно-экономическая характеристика представлена на рис. 12
Рис. 12
Топливно-экономическая характеристика, полученная на основе эмпирических зависимостей, позволяет на стадии проектирования оценить расход топлива автомобиля.
- Содержание
- Автомобиль
- Система индексации автомобилей
- Мощность – величина, численно равная работе, совершенной за единицу времени.
- Основные узлы и механизмы
- Компоновочные схемы
- Двигатель
- Кривошипно-шатунный механизм
- Такты двс
- Фазы газораспределения
- Т ермодинамика двс
- Термодинамические процессы
- Цикл Карно
- Показатели цикла
- Индикаторные диаграммы двс
- Система питания
- Карбюратор
- Система охлаждения
- Система смазки
- Шестеренчатый насос
- Система зажигания
- Генератор
- Стартер
- Привод стартера «Бендикс»
- Обгонная муфта
- Двухтактный двигатель
- Сцепление
- Г идромуфта
- Коробка передач
- Гидротрансформатор
- Карданная передача
- Дифференциал
- П а олуоси
- Тормоза
- Рулевое управление
- Схемы сил, действующих на колесо:
- У становка колес
- В зависимости от силовой схемы автомобиля основным несущим элементом может быть рама или кузов.
- Топливо
- Э лектрооборудование
- А ккумулятор
- Силы при разгоне
- Устойчивость автомобиля
- Проходимость автомобиля
- П лавность хода
- Технические показатели автомобильных дорог
- Тяговый расчет автомобиля
- 1. Выбор основных параметров автомобиля
- 2. Внешняя скоростная характеристика двигателя
- 3. Максимальная скорость равномерного движения автомобиля
- 4. Передаточное отношение главной передачи
- 5. Передаточное отношение на первой передаче
- 6. Выбор передаточных чисел коробки передач
- 7. Тяговая характеристика автомобиля
- Приёмистость автомобиля
- Сравнительный анализ и выбор предпочтительного варианта легкового автомобиля Введение
- 1. Описание характерных особенностей автомобиля
- 2. Построение структурной схемы исследуемого автомобиля
- 3. Построение Функциональной схемы автомобиля
- 4. Обоснование и выбор критериев сравнения.
- Требования к критериям сравнения
- 4.1. Дерево критериев оценки
- Характеристика объектов сравнения
- 6. Определение для каждого обьекта сравнения комплексной оценки качества с использованием экспертных методов
- 6.1. Граф связанности критериев.
- 6.2. Определение соотношений эквивалентности
- 6.3. Определение значений комплексного критерия оценки и относительной комплексной оценки качества
- Выделение множества эффективных вариантов сравниваемых объектов
- Выбор предпочтительного варианта объекта, соответствующего конкретным условиям выбора
- Автомобильные задачи
- Международная система единиц
- Автомобильный словарь
- Дополняйте и уточняйте! Знаете ли вы автомобиль
- Технические характеристики автомобилей
- Характеристики автомобильных двигателей
- Литература