11.3. Колебания управляемых колес вследствие их дисбаланса
Если колесо полностью сбалансировано, то центробежные силы, действующие в каждой точке колеса, а также моменты этих сил относительно центра тяжести взаимно уравновешиваются, т.е. векторные суммы указанных сил и моментов равны нулю. При полной уравновешенности главная центральная ось инерции колеса (ГЦОИК) и ось его вращения (ОВ) совпадают. При неуравновешенных колесах различают 3 вида дисбаланса: статический, динамический и комбинированный (рис. 65).
Если ГЦОИК и ОВ колеса не совпадают, но взаимно параллельны, то имеет место статический дисбаланс. При статическом дисбалансе центр масс колеса смещен относительно ОВ на величину эксцентриситета (е). Причинами смещения центра масс может быть неравномерность распределения материала в элементах колеса в радиальном направлении (шине, ободе, ступице), неточности сборки, попадание инородного предмета в протектор шины, наличие заплаты на камере и др. Как показывает статистика, 55% дисбаланса дает шина, 15% обод и 30% ступица с тормозным
Рис. 65. Различные виды дисбаланса (неуравновешенности)
автомобильных колес:
а) статический Рц 0; Мц= 0; б) динамический Рц = 0; Мц 0;
в) суммарный Рц 0; Мц 0
барабаном. При вращении колеса, имеющего статический дисбаланс, возникает центробежная сила инерции, вектор которой направлен перпендикулярно оси вращения и приложен в центре масс:
Рцб = mкек2, (256)
где mк - масса колеса.
При статическом дисбалансе сумма моментов сил инерции относительно центра масс равна 0. Ликвидировать статический дисбаланс можно, закрепив соответствующую массу на ободе колеса таким образом, чтобы корректирующая масса создавала такую же по величине, но противоположно направленную силу инерции. В результате векторная сумма указанных сил окажется равной нулю, а центр тяжести колеса будет располагаться на оси вращения. Заметим, что ликвидация статического дисбаланса может вызвать динамический дисбаланс или изменить его величину (если он имеется).
Динамический дисбаланс имеет место тогда, когда ГЦОИК и ОВ колеса не совпадают, но пересекаются в центре масс. Отклонение ГЦОИК от ОВ на некоторый угол (рис. 65,б) объясняется несимметричностью распределения массы конструктивных элементов колеса относительно плоскости вращения, проходящей через центр масс колеса, т.е. сдвигом центров масс различных сегментов колеса относительно указанной плоскости. Причинами этого могут быть те же самые факторы, которые обусловливают и статический дисбаланс. В результате при динамическом дисбалансе сумма моментов центробежных сил инерции относительно центра масс отлична от 0, хотя их сумма равна 0. Образующаяся пара инерционных сил создает момент в плоскости, проходящей через ОВ. При этом плоскость, в которой действует указанная пара сил, вращается вместе с колесом, создавая знакопеременный момент, обусловливающий поперечные биения колеса. Для легковых автомобилей допустимое биение составляет 2 - 3 мм, для грузовых – 3 - 4 мм. Динамический дисбаланс, в отличие от статического, можно выявить лишь при вращении колеса. Для устранения динамического дисбаланса к ободу колеса прикрепляют корректирующие грузы, которые создают момент, аналогичный по величине, но противоположный по направлению.
В реальных условиях эксплуатации имеет место комбинированный (суммарный) дисбаланс. В этом случае центр тяжести колеса лежит вне ОВ (но на ГЦОИК), а сами оси скрещиваются или пересекаются (рис. 65,в).
Рассмотрим механизм возникновения угловых колебаний управляемых колес вследствие их статической неуравновешенности. При вращении статически неуравновешенного колеса возникает центробежная сила инерции, которую можно разложить на вертикальную и горизонтальную составляющие (рис. 66):
Рис. 66. Сила инерции при статическом дисбалансе
Рцz = Рцsinк = mкек2sinк; (257)
Рцх = Pцcosк = mкек2cosк. (258)
Под действием силы Рцх колесо стремится повернуться относительно шкворня, а под действием силы Рцz – переместится в вертикальном направлении. Горизонтальная составляющая Рцх создает крутящий момент относительно оси шкворня (рис. 67), величина которого равна:
Мш = Рцхlц = Рцбlц cos = mкек2 lцcosк, (259)
где lц - плечо действия силы инерции.
Рис. 67. Крутящие моменты на колесах при статическом дисбалансе
Учитывая, что величина дисбаланса Мдб = mкge, а к = Vа/rк, получим:
Мш = . (260)
В условиях эксплуатации значение дисбаланса не должно превышать для легковых автомобилей 25 - 30 Нм, а грузовых и автобусов – 100 - 115 Нм. Для уменьшения дисбаланса на автозаводах, автотранспортных и авторемонтных предприятиях производят балансировку колес, доводя статический дисбаланс до приемлемых значений: 5 Нм - для легковых автомобилей; 20 - 30 Нм - для грузовых автомобилей и автобусов.
- Введение
- 1. Взаимодействие колеса с опорной поверхностью
- 1.1. Радиусы автомобильного колеса
- 1.2. Реакции опорной поверхности
- 1.3. Момент сопротивления качению
- 1.4. Коэффициент сопротивления качению
- Коэффициент сопротивления качению для различных дорог
- 1.5. Продольная реакция и режим качения колеса
- Ведущий
- Нейтральный
- Тормозной
- 1.6. Сила и коэффициент сцепления шины с дорогой
- Коэффициент сцепления для различных дорог
- 2. Силы, действующие на автомобиль в процессе движения
- 2.1. Сила сопротивления качению
- 2.2. Сила сопротивления подъему
- 2.3. Сопротивление воздушной среды
- Коэффициенты обтекаемости и площади лобового сопротивления
- 2.4. Внутренние силы сопротивления
- Механические потери двс
- Трение в узлах
- Привод механизмов
- 2.5. Продольные усилия ведущих колес
- 2.6. Уравнение силового баланса
- 2.7. Приведенная сила инерции
- 2.8. Уравнение мощностного баланса
- 2.9. Распределение нормальных реакций дороги на передние и задние колеса
- 3. Режим работы и характеристики двигателя
- 3.1. Режим работы двигателя
- 3.2. Управление крутящим моментом двигателя
- 3.3. Скоростные характеристики
- 3.4. Топливные характеристики
- 3.5. Эксплуатационный режим работы
- 4. Динамика прямолинейного движения
- 4.1. Динамический паспорт автомобиля
- 4.2. Разгон автомобиля
- Р ис. 22. Характеристика ускорений
- 4.3. Особенности автомобилей с гидромеханической трансмиссией
- 4.3.2. Показатели к характеристики рабочего процесса
- 4.4. Оценочные показатели и характеристики разгонных и скоростных свойств автомобиля
- 5. Топливная экономичность
- 5.1. Измерители топливной экономичности
- 5.2. Уравнение расхода топлива
- 5.3. Оценочные показатели и характеристики топливной экономичности автотранспортных средств
- 5.4. Эксплуатационные нормы расхода топлива
- Значение линейных норм расхода топлива
- 6. Экологическая безопасность
- 6.1. Значение экологической безопасности автомобиля
- 6.2. Вредные вещества и источники их выделения
- 6.3. Влияние режима работы двигателя на токсичность отработавших газов
- 6.4. Влияние скоростного режима работы двигателя на экологическую безопасность
- 6.5. Показатели и характеристики выброса вредных веществ
- Относительная опасность некоторых вредных веществ
- 6.6. Уравнение выброса вредных компонентов отработавших газов
- 6.7. Экологическая характеристика токсичности установившегося движения
- 6.8. Токсичность отработавших газов при различных режимах работы двигателя автомобиля
- 7. Тормозные свойства автомобиля
- 7.1. Классификация режимов торможения
- 7.2. Уравнение торможения
- 7.3. Торможение при неполном использовании сил сцепления
- 7.4. Торможение с полным использованием сил сцепления
- 7.5. Основные фазы процесса торможения
- 7.6. Тормозной путь автомобиля
- 7.7. Распределение тормозных усилий между осями
- 8. Проходимость автомобиля
- 8.1. Проходимость автомобиля и ее значение
- 8.2. Показатели проходимости
- Автомобили
- 8.3. Взаимодействие колеса с грунтом
- 8.4. Преодолевание пороговых препятствий
- 8.5. Пути повышения проходимости
- 9. Плавность хода
- 9.1. Плавность хода и ее значение
- 9.2. Измерители плавности хода
- 9.3. Колебания автомобиля
- 9.4. Способы повышения плавности хода автомобиля
- 10. Динамика криволинейного движения
- 10.1. Значение и особенности криволинейного движения
- 10.2. Силы и моменты, обеспечивающие поворот
- 10.3. Боковой увод колеса
- 10.4. Кинематические параметры криволинейного движения
- 10.5. Силы инерции при криволинейном движении
- 10.6. Боковые реакции на колесах в процессе поворота
- 10.7. Крен кузова при криволинейном движении
- 11. Управляемость и маневренность
- 11.1. Поворачиваемость автомобиля
- 11.2. Критическая скорость по условиям управляемости
- 11.3. Колебания управляемых колес вследствие их дисбаланса
- 11.4. Автоколебания управляемых колес
- 11.5. Колебания управляемых колес вследствие кинематического несоответствия подвески и рулевого управления
- 11.6. Стабилизация управляемых колес
- 11.7. Углы установки колес
- 11.8. Маневренность автотранспортных средств
- Р ис.79. Угол горизонтальной гибкости
- 12. Устойчивость автомобиля
- 12.1. Основные виды устойчивости автомобиля
- 12.2. Критическая скорость по боковому скольжению
- 12.3. Критическая скорость движения по опрокидыванию
- 13. Контрольные вопросы
- 13.1. Взаимодействие колеса с опорной поверхностью
- 13.2. Силы, действующие на автомобиль в процессе движения
- 13.3. Режим работы и характеристики двигателя
- 13.4. Динамика прямолинейного движения
- Топливная экономичность
- 13.6. Экологическая безопасность
- 13.7. Тормозные свойства автомобиля
- 9. Что понимается под временем срабатывания тормозного привода?
- 13.8. Проходимость автомобиля
- 13.9. Плавность хода
- 13.10. Динамика криволинейного движения
- 13.11. Управляемость и маневренность автомобиля
- 13.12. Устойчивость автомобиля