logo search
Теория авиационных двигателей (РИО)

7.4. Типы основных камер сгорания гтд и организация процесса горения в них

Практически применяются камеры сгорания трех основных типов (рис. 7.2): а трубчатые (индивидуальные), б  трубчато-кольцевые и в кольцевые.

Трубчатая камера сгорания (рис. 7.2 а) состоит из жаровой трубы 1, внутри которой организуется процесс горения, и корпуса 2.

В трубчато-кольцевой камере (рис. 7.2 б) все жаровые трубы заключены в общий корпус, имеющий внутреннюю и наружную поверхности, охватывающие

Рис. 7.2. Типы камер сгорания

вал двигателя.

В кольцевой камере сгорания (рис. 7.2 в) жаровая труба имеет в сечении форму кольца, также охватывающего вал двигателя.

Однако, несмотря на большое разнообразие схем и конструктивных форм камер сгорания, процесс горения в них организуется практически одинаково.

Одной из важнейших особенностей организации процесса горения в основных камерах сгорания ГТД является то, что он должен протекать при сравнительно больших коэффициентах избытка воздуха. При реализуемых в настоящее время температурах газа перед турбиной порядка = 1800...1600 К и ниже, как уже отмечалось, значение коэффициента избытка воздуха (среднее для всей камеры) должно составлять 2,0…3,0 и более. При таких значенияходнородная топливо-воздушная смесь, как было указано выше, не воспламеняется и не горит. При резком уменьшении подачи топлива в двигатель, которое может иметь место в условиях эксплуатации, коэффициент избытка воздуха может достигать еще существенно больших значений (до 20…30 и более).

Вторая важная особенность этих камер состоит в том, что скорость потока воздуха или топливо-воздушной смеси в них существенно превышает скорость распространения пламени. И, если не принять специальных мер, пламя будет унесено потоком за пределы камеры сгорания

Поэтому организация процесса горения топлива в основных камерах ГТД основывается на следующих двух принципах, позволяющих обеспечить устойчивое горение топлива при больших значениях и высоких скоростях движения потока в них:

1. Весь поток воздуха, поступающий в камеру сгорания, разделяешься на две части, из которых только одна часть (обычно меньшая) подается непосредственно в зону горения (где за счет этого создается необходимый для устой­чивого горения состав смеси). А другая часть направляется в обход зоны горения (охлаждая снаружи жаровую трубу) в так называемую зону смешения (пе­ред турбиной), где смешивается с продуктами сгорания, понижая в нужной мере их температуру;

2. Стабилизация пламени в зоне горения обеспечивается путем создания в ней зоны обратных токов, заполненной горячими продуктами сгорания, непрерывно поджигающими свежую горючую смесь.

Для примера на рис. 7.1 показана схема трубчато-кольцевой камеры сгорания. Камера состоит из жаровой трубы и корпуса. В передней части жаровой трубы, которую называют фронтовым устройством, размещаются форсунка для подачи топлива и лопаточныйзавихритель. Для уменьшения скорости воздуха в камере на входе в нее (за компрессором) выполняется диффузор, благодаря которому скорость воздуха перед фронтовым устройством обычно не превышает 50 м/с.

Воздух, поступающий в камеру сгорания из компрессора, делится на две частии. Одна частьнаправляется в зону горения, а вторая часть в зону смешения. Первая часть, так называемый первичный воздух , поступает непосредственно через фронтовое устройство к месту расположения факела распыла топливной форсунки и используется для формирования богатой топливной смеси такого состава, который обеспечивал бы на всех режимах достаточно быстрое и устойчивое сгорание.

Вторая его часть (так называемый вторичный воздух ) через боковые отверстия в жаровой трубе поступает в камеру для завершения процесса горения (первичного воздуха для этого недостаточно). Общее количество воздуха, поступающего в зоны горения, обеспечивает в ней коэффициент избытка воздуха порядка= 1,6…1,7, что соответствует устойчивому горению, полному сгоранию и температуре порядка 1800…1900 К.

Если допустимая температура газов перед турбиной ниже этой величины, необходимая для её уменьшения часть воздуха поступает в жаровую трубу через задние ряды отверстий или щелей, быстро снижая их температуру до допустимой. При этом важно подчеркнуть, что, если какая-то часть топлива не успеет сгореть до попадания в зону смешения, то дальнейшее ее догорание практически уже не произойдет, так как коэффициент избытка воздуха возрастает до значений, превышающих предел устойчивого горения.

Рис. 7.3. Зона обратных токов

в основной камере сгорания

Структура потока в передней части жаровой трубы камеры сгорания с так называемым лопаточным завихрителем показана схематично на рис. 7.3. Воздух поступает сюда через лопаточный завихритель, лопатки которого закручивают поток (подобно лопаткам входного направляющего аппарата компрессора). Далее воздух движется вдоль поверхности жаровой трубы в виде конической вихревой струи. Вихревое движения воздуха приводит к понижению давления в области за завихрителем, вследствие чего в эту область устремляется газ из расположенных дальше от фронтового устройства участков жаровой трубы. В результате здесь возникает зона обратных токов. Топливо-воздушная смесь, образовавшаяся за фронтовым устройством, при запуске двигателя поджигается огненной струей, создаваемой пусковым воспламенителем (рис. 7.1). Но в последующем горячие продукты сгорания вовлекаются в зону обратных токов и обеспечивают непрерывное поджигание свежей смеси. Кроме того, горячие газы, циркулирующие в этой зоне, являются источником теплоты, необходимой для быстрого испарения топлива.