1.4. Тяговая работа и тяговый кпд гтд прямой реакции
Различные типы ГТД выполняют различные функции: тепловой машины и движителя, тепловой машины и частично движителя и только тепловой машины.
Функция ГТД как тепловой машины заключается в преобразовании химической энергии топлива, выделяющейся при его сгорании в камере сгорания, в механические виды энергии, а именно: у ГТД прямой реакции (ТРД и ТРДД) – в приращение кинетической энергии газового потока, проходящего через двигатель; в ГТД непрямой реакции (ТВД и ТВВД) – в механическую работу на валу винта и частично в приращение кинетической энергии газового потока, а в вертолетных ГТД (которые также являются ГТД непрямой реакции) и вспомогательных газотурбинных установках – в механическую работу на валу винта или другого потребителя.
Движителем является элемент силовой установки, создающий тягу для перемещения летательного аппарата.
В силовой установке с ГТД прямой реакции такой элемент выделить невозможно, т. к. двигатель такого типа в целом совмещает в себе и функцию тепловой машины, и функцию движителя. Функция ГТД прямой реакции как движителя заключается в преобразовании кинетической энергии газового потока, проходящего через двигатель, в силу тяги, которая при движении самолета производит работу, называемую тяговой работой Lтяг.
В силовой установке с ГТД непрямой реакции (ТВД и ТВВД) функцию движителя ГТД выполняет лишь частично, т. к. движителем в такой силовой установке в основном является воздушный винт.
В вертолетных силовых установках функцию движителя полностью выполняет несущий винт.
Тяговой работойназывается работа силы тяги двигателя, затрачиваемая на перемещение летательного аппарата, т. е. произведение тяги двигателя на путь, пройденный летательным аппаратом за одну секунду (т.е. на скорость полетаV). Для ТРДД в расчете на 1 кг воздуха, проходящего через внутренний контур двигателя, получим
.
Тяговым КПД двигателя называется отношение тяговой работы к работе двигателя как тепловой машины, т. е.
. (1.9)
Тяговый КПД характеризует эффективность преобразования работы двигателя как тепловой машины в тяговою работу двигателя при перемещении летательного аппарата.
Подставив в выражение (1.9) значение Lтм=Lц=для ТРД, получим
.
Таким образом, тяговый КПД ТРД показывает, какая часть кинетической энергии, приобретенной потоком газа в двигателе, преобразуется в тяговую работу. Иными словами, он характеризует совершенство ТРД как движителя, т. е. устройства, предназначенного для создания тяги.
Установим, какие потери оценивает тяговый КПД ТРД. Так как
,
то для потерь, учитываемых ηтяг, получим
.
Разность (сс–V) – является скоростью газа, покинувшего двигатель, относительно неподвижного атмосферного воздуха, поэтомуLц– Lтяг= (сс–V)2/2 есть кинетическая энергия этого потока.
Таким образом, в ТРД не вся кинетическая энергия потока газа, прошедшего через двигатель, преобразуется в тяговую работу. Часть ее (сс–V)2/2 теряется с выходящим газом в атмосфере, что и оценивает тяговый КПД. Эти потери называютпотерями с выходной скоростью.
Так как для ТРД
Lтм=Lц=, а,
то для ηтягполучим следующее выражение
. (1.10)*
Рис.1.12. Зависимость и от скорости полета
На рис. 1.12 представлена качественная зависимость тягового КПД от скорости полета. При V = 0, т. е. когда двигатель работает на месте, тяговый КПД равен нулю, т. к. из-за отсутствия перемещения самолета работа силы тяги равна нулю. Значит, вся кинетическая энергия газа на выходе из двигателя является неиспользованной (потерянной). При увеличении скорости полета разность (сс – V) снижается из-за более интенсивного увеличения скорости полета посравнению со скоростью истечения газов сс. Это приводит к снижению потерь с выходной скоростью, а следовательно, к повышению тягового КПД. Но удельная тяга Pуд=(cc– V) при этом снижается. Как будет показано ниже, при некоторойскорости полета V = Vмах скорость истечения газов становится равной скорости полета. При этой скорости полета потери с выходной скоростью отсутствуют и тяговый КПД достигает максимального значения, равного единице. Но удельная тяга, а значит, и тяга становятся равными нулю. Поэтому полезная работа силы тяги превращается в нуль, т. е. происходит «вырождение» двигателя.
В зависимости от типа ГТД прямой реакции и режима полета самолета тяговый КПД может изменяться в широких пределах. Его значение в условиях полета обычно не превышает 0,6…0,7. Из формулы (1.10) видно, что повышение тягового КПД возможно за счет снижения скорости истечения газов cc. Как будет показано ниже, это может быть достигнуто за счет применения двухконтурных турбореактивных двигателей. У этих двигателей при тех же параметрах цикла, что и водноконтурных ТРД, скорость истечения газов ниже, поэтому тяговый КПД выше.
- Предисловие
- Введение
- Турбореактивный одноконтурный двигатель (трд)
- Турбореактивный двигатель с форсажом (трдф)
- Двухконтурный турбореактивный двигатель без смешения потоков (трдд)
- Двухконтурный турбореактивный двигатель со смешением потоков (трдДсм)
- Двигатели непрямой реакции
- Турбовальные двигатели (тВаД)
- Турбовинтовые двигатели (твд)
- Часть 1. Основы теории элементов авиационных гтд
- 1.1. Уравнение неразрывности
- 1.2. Уравнение сохранения энергии
- 1.3. Уравнение первого закона термодинамики
- 1.4. Обобщенное уравнение бернулли
- 1.5. Теорема эйлера об изменении количества движения
- Глава 2 тяга, мощность и удельные парамеры авиационных двигателей
- 2.1. Двигатель и силовая установка
- 2.2. Тяга реактивного двигателя
- 2.3. Эффективная тяга силовой установки
- 2.4. Внешнее сопротивление силовой установки и его составляющие
- 2.5. Удельные параметры авиационных гтд
- Удельные параметры гтд прямой реакции
- Удельные параметры гтд непрямой реакции
- Глава 3 теория ступени компрессора гтд
- 3.1. Назначение компрессоров гтд, их типы
- И основные требования к ним
- 3.2. Схема и принцип действия ступени осевого компрессора
- 3.3. Работа, затрачиваемая на вращение колеса ступени
- 3.4. Изображение процесса сжатия воздуха в ступени в p, V- и t,s- координатах
- 3.5. Основные параметры ступени компрессора
- Геометрические параметры
- Газодинамические и кинематические параметры
- 1. Степень повышения давления в ступени
- 2. Адиабатная работа сжатия воздуха в ступени
- 3. Кпд ступени
- 5. Числа Маха на входе в рк и на.
- 6. Коэффициент расхода
- 7. Коэффициент адиабатного напора
- 8. Степень реактивности ступени.
- 3.6. Условия совместной работы элементов ступени, расположенных на различных радиусах
- 3.7. Профилирование ступеней по закону постоянства циркуляции
- 3.8. Параметры и характеристики компрессорных решеток профилей
- Параметры профиля и решетки профилей
- Характеристики решеток профилей
- Влияние чисел м и Re на характеристики компрессорных решеток
- 3.9. Особенности течения воздуха в лопаточных венцах осевого компрессора
- 3.10. Особенности трансзвуковых и сверхзвуковых ступеней осевого компрессора
- 3.11. Особенности вентиляторных ступеней трдд с большой степенью двухконтурности
- 3.12. Схема и особенности работы центробежной ступени компрессора
- 3.13. Работа вращения колеса и основные параметры центробежной ступени
- Глава 4
- 4.1. Основные параметры многоступенчатого компрессора (каскада) и их связь с параметрами ступеней
- 4.2. Формы проточной части осевого компрессора (каскада)
- 4.3. Распределение работы сжатия воздуха между ступенями компрессора (каскада)
- Глава 5 характеристики компрессоров и их регулирование
- 5.1. Общие представления о характеристиках компрессоров и методах их определения
- 5.2. Применение теории подобия к построению характеристик компрессора
- 5.3. Характеристики ступени осевого компрессора
- 5.4. Срывные режимы работы ступени
- 5.5. Характеристики нерегулируемых многоступенчатых компрессоров Совместная работа ступеней в многоступенчатом компрессоре
- Граница устойчивой работы многоступенчатого компрессора
- 5.6. Срывные и неустойчивые режимы работы многоступенчатых компрессоров
- 5.7. Рабочие режимы и запас устойчивости компрессора в системе гтд
- 5.8.Задачи и способы регулирования компрессоров гтд
- Перепуск воздуха
- Поворот лопаток направляющих аппаратов
- Разделение компрессора на каскады (группы ступеней)
- Глава 6 газовые турбины гтд
- 6.1. Назначение турбин гтд и основные
- Требования к ним
- 6.2. Схема и принцип работы ступени турбины
- 6.3. Работа газа на окружности колеса ступени
- 6.4. Изображение процесса расширения газа в ступени в p,V- и I,s- координатах
- 6.5. Основные параметры ступени турбины Геометрические параметры
- Газодинамические параметры
- Кинематические параметры
- 6.6. Потери в ступени турбины и их зависимость от различных факторов
- Потери в ступени турбины
- Влияние параметра u /c1 на кпд ступени
- 6.7. Основные параметры многоступенчатой турбины и их связь с параметрами её ступеней
- 6.8. Способы представления характеристик ступени газовой турбины
- 6.9.Характеристики ступени турбины
- Характеристики ступени турбины
- Глава 7 камеры сгорания гтд
- 7.1. Назначение камер сгорания и основные
- Требования к ним
- 7.2. Основные параметры камер сгорания гтд
- 7.3. Основные закономерности процесса горения топлива
- 7.4. Типы основных камер сгорания гтд и организация процесса горения в них
- 7.5. Характеристики камер сгорания авиационных гтд
- 7.6. Потери полного давления в камерах сгорания гтд
- 7.7. Определение расхода топлива в камерах сгорания
- 7.8. Назначение камер смешения и основные требования к ним
- 7.9. Схемы камер смешения и картина течения в них
- 7.10. Расчет параметров потока за камерой смешения
- Глава 8 входные и выходные устройства авиационных силовых установок
- 8.1.Типы входных устройств и их классификация
- 8.2. Основные параметры входных устройств
- 8.3. Особенности дозвуковых ходных устройств
- 8.4. Организация рабочего процесса в сверхзвуковых входных устройствах внешнего сжатия
- 8.5. Назначение выходных устройств и предъявляемые к ним требования
- 8.6.Схемы, основные параметры и режимы работы дозвуковых выходных устройств
- Скорость истечения газа из суживающегося сопла и режимы его работы
- 8.7. Потери в выходных устройствах и способы их оценки
- 8.8.Устройства реверса тяги
- Турбовальных гтд вертолетов
- Часть 2. Термодинамический цикл, совместная
- 1.2. Зависимость работы и внутреннего кпд реального цикла от π и δ
- Зависимость работы и внутреннего кпд цикла
- Оптимальная степень повышения давления в компрессоре
- Зависимость работы и внутреннего кпд цикла от степени подогрева воздуха δ.
- 1.4. Тяговая работа и тяговый кпд гтд прямой реакции
- 1.5. Полный кпд гтд прямой реакции
- 1.6. Оптимальное распределение работы цикла между контурами в трдд без смешения потоков
- 1.7. Оптимальное значение степени повышения давления в вентиляторе трдд со смешением потоков
- 1.8. Связь удельных параметров трд и трдд с параметрами рабочего процесса
- 1.9. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени повышения давления в цикле
- Зависимость Руд и Судот π для одноконтурных двигателей
- Зависимость Руд и Суд от π для двухконтурных двигателей
- 1.10. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени подогрева рабочего тела в цикле
- Зависимость Руд и СудотΔ для двухконтурных двигателей
- Совместная работа элементов одновальных газогенераторов
- 2.1. Функциональные модули авиационных силовых становок
- 2.2. Управляемые параметры и управляющие факторы
- 2.3. Совместная работа элементов одновальных газогенераторов и одновальных трд
- 2.4. Рабочие линии на характеристике компрессора одновального газогенератора
- 2.5. Критериальные характеристики одновальных газогенераторов
- 2.6. Программы управления одновальных гг и
- Одновальных трд, управляемых по одному параметру
- Рассогласование ступеней компрессора в одновальном гг
- (И одновальном трд)
- Программы управдения одновальных гг и одновальных трд
- Глава 3 Совместная работа элементов и программы управления двухконтурных двигателей
- 3.1. Совместная работа элементов трдДсм
- 3.2. Рабочие линии на характеристике кнд и влияние на них различных факторов
- 3.3. Формирование программ управления трддсм
- Глава 4 характеристики одноконтурных и двухконтурных трд Характеристики одноконтурных трд
- 4.1. Скоростные характеристики трд
- 4.2. Высотные характеристики трд
- 4.3. Дроссельные характеристики трд
- Характеристики двухконтурных трд (трдд)
- 4.4. Скоростные характеристики трдд
- 4.5. Высотные характеристики трдд
- 4.6. Высотно-скоростные характеристики трдд
- 4.7. Дроссельные характеристики трдд
- Глава 5 рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигателей
- 5.1. Удельные параметры тВаД и их зависимость от
- Параметров рабочего процесса
- 5.2. Области применения и особенности термодинамического цикла тВаД
- 5.3. Совместная работа элементов турбовальных двигателей
- 5.4. Особенности регулирования вертолетных турбовальных двигателей
- 5.5. Программы управления вертолетных гтд на режимах ограничения
- 5.6. Высотные характеристики турбовальных двигателей
- 5.7. Дроссельные характеристики турбовальных двигателей
- 5.8. Климатические характеристики турбовальных двигателей
- 5.9. Схемы и основные параметры турбовинтовых и турбовинтовентиляторных двигателей
- 5.10. Оптимальное распределение работы цикла твд и тввд между винтом и реакцией газовой струи
- 5.11. Совместная работа элементов и программы управления твд
- 5.12. Эксплуатационные характеристики твд и тввд
- 5.13. Области применения тввд и перспективы их развития
- Глава 6 неустановившиеся режимы работы авиационных гтд
- 6.1. Требования к динамическим характеристикам гтд
- 6.2. Факторы, влияющие на переходные процессы в гтд. Гипотеза квазистационарности
- 6.3. Уравнения динамики роторов гтд
- 6.4. Факторы, влияющие на избыточную мощность турбины
- 6.5. Изменение параметров рабочего процесса при приемистости и сбросе газа в одновальныхтрд
- 6.6. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухвальных трд
- 6.7. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухконтурных трд
- 6.8. Запуск гтд на земле
- 6.9. Запуск гтд в полете
- Литература
- Часть 1. Основы теории элементов авиационных гтд Глава 1. Основные уравнения движения газа в двигателях и их элементах
- Глава 2. Тяга, мощность и удельные параметры авиационных двигателей
- Глава 3. Теория ступени компрессора гтд
- Глава 4. Многоступенчатые компрессоры
- Глава 5. Характеристики компрессоров и их регулирование
- Глава 6. Газовые турбины гтд
- Глава 7. Камеры сгорания и камеры смешения авиационных гтд
- Глава 8. Входные и выходные устройства авиационных силовых установок
- Часть 2.Термодинамический цикл, совместная работа элементов и характеристики авиационных силовых
- Глава 1. Термодинамический анализ рабочего процесса гтд прямой реакции
- Глава 2. Совместная работа элементов одновальных газогенераторов
- Глава 3. Совместная работа элементов и программы управления двухконтурных двигателей
- Глава 4. Характеристики одноконтурных и двухконтурных трд
- Глава 5. Рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигвтелей
- Глава 6. Неустановившиеся режимы работы авиационных гтд