5.4. Срывные режимы работы ступени
Как уже указывалось, при са <саminиз-за превышения критических углов атаки в лопаточных венцах ступени возникает срыв потока, следствием которого могут явиться нарушения нормальной работы компрессора в эксплуатации.
Экспериментальные исследование этих режимов сводятся к следующему.
1). Вследствие производственных отклонений в геометрии отдельных лопаток и всегда имеющихся в реальных условиях асимметрии потока и крупномасштабной турбулентности срыв потока возникает не навсех лопаткаходновременно. Напор, создаваемый попавшими в срыв лопатками, оказывается меньшим, чем напор, создаваемый соседними лопатками, работающими еще без срыва. Из-за этого различия возникает тенденция к возвратному течению воздуха через области срыва навстречу основному потоку. В результате осевая скорость в этих областях резко уменьшается, углы атаки самопроизвольно возрастают до значений, намного превышающих критические, и обычно развивается обратное течение типа, например, показанного на рис. 5.8. В тоже время из-за вызванного этим уменьшения реального проходного сечения ступени осевая скорость воздуха около той части лопаток, которая работает без срыва, может даже возрасти, что соответствует снижению местных углов атаки. Таким образом, первоначальные отличия в условиях обтекания различных лопаток ступени усиливаются, и возникает четкое и устойчивое разделение потока на зоны срыва и области нормального обтекания с углами атаки меньше критических.
|
| ||
Рис. 5.8. Течение воздуха в ступенис малым при < |
|
| Рис. 5.9. Схема течения воздуха в компрессорной решетке при возникновении срыва |
2). Возникшие срывные зоны не остаются связанными с одними и теми же лопатками колеса или аппарата, а равномерно перемещаются в окружном направлении. Это явление получило названиевращающегося срыва.
Основной причиной перемещения (вращения) срывных зон является растекание воздушного потока по обе стороны занятых срывом межлопаточных каналов (рис. 5.9). Как видно, направление вектора скорости набегающего на лопатки потока по обе стороны от зоны срыва изменяется таким образом, что на лопатках, расположенных (на схеме) справа от зоны срыва, углы атаки увеличиваются, что приводит к распространению срыва на эти лопатки. С противоположной стороны, наоборот, углы атаки уменьшаются, и срыв прекращается. Таким образом, зона срыва будет перемещаться в правую сторону.
Срывная зона в осевой ступени охватывает обычно одновременно и колесо и частично направляющий аппарат. Она вращается относительно стенок корпуса в сторону вращения колеса, но с угловой скоростью,меньшей угловой скорости вращения колеса.
При этом, как показывают экспериментальные исследования, при изменении угловой скорости рабочего колеса угловая скорость вращения зоны срываизменяется почти пропорционально, так что относительная скорость вращения зон срывав широком диапазоне режимов работы ступени остается практически неизменной.
Число срывных зон может быть различным в зависимости от типа ступени и режима ее работы. Если число зон превышает единицу, то устойчивым их положением является обычно такое, при котором они размещены равномерно по окружности и вращаются с одинаковой скоростью.
3). В ступенях с большими значениями относительного диаметра втулки
(и более), имеющих относительно короткие лопатки, срыв возникает почти одновременно по всей высоте лопатки и быстро (за 0,01…0,02 с) распространяется на значительную часть окружности лопаточного венца. Возникает обычно одна мощная срывная зона, занимающая от одной трети до половины окружности колеса (рис. 5.10,а) и вращающаяся со скоростью, меньшей половины скорости вращения ротора (0,1 ... 0,4).
Рис. 5.10. Типичный вид срывной зоны (а) и характеристики (б) для ступени с большой втулкой | Рис. 5.11. Типичный вид срывной зоны (а) и характеристики (б) для ступени с малой втулкой |
В зоне срыва обычно наблюдаются обратные токи воздуха. В результате сильного дросселирующего действия мощной зоны срыва и больших потерь в ней расход воздуха через ступень и создаваемый ею напор резко падают. Режим работы ступени скачком переходит в точку Б(рис. 5.10б). Характеристика ступени оказывается разрывной. Таким образом, при дросселировании ступени с относительно короткими лопатками в результате возникновения в ней вращающегося срыва наблюдается самопроизвольный переход режима её работы на так называемую срывную ветвь характеристики с более низким уровнем напора, расхода и КПД. На рис. 5,10бона помечена множеством мелких точек, так как здесь наблюдается высокий уровень нестационарности потока.
Если после перехода режима работы ступени в точкуБпродолжать уменьшать расход воздуха через нее, то зона срыва увеличивается в размерах, занимая все большую часть окружности колеса. При увеличении расхода воздуха размеры срывной зоны, наоборот, уменьшаются, но вследствие описанной выше устойчивости срывной формы течения она сохраняется до значений коэффициента расхода, заметно превышающих значениев точкеБ.Только после существенного увеличения(на рис. 5.10б до режимаГ) срывные зоны распадаются, и ступень переходит на режим, соответствующий точкеД, где наблюдается нормальная (бессрывная) форма течения. Таким образом, у ступеней с короткими лопатками наблюдается четко выраженныйгистерезисхарактеристики.
4). В ступенях с малымиd (0,3…0,5), т. е. с относительно длинными лопатками, условия обтекания элементов, расположенных на разных радиусах, существенно различны. Поэтому здесь срыв обычно не захватывает сразу всю лопатку, а занимает сначала небольшую её часть. В большинстве случаев критические углы атаки достигаются, прежде всего, в периферийных сечениях лопаток, где и располагаются первоначально возникшие зоны срыва. При этом обычно возникает не одна, а несколько (до шести, а иногда и более) равномерно размещенных по окружности зон срыва (рис. 5. 11а), которые вращаются со скоростью, равной 5070% скорости вращения колеса.
Из-за относительно малых размеров первоначально возникших срывных зон характеристика ступени с длинными лопатками может не иметь разрыва при (рис. 5.11б). Наличие срыва проявляется здесь лишь в снижении напора и более резком снижении КПД ступени при. При этом по мере сниженияразмеры каждой срывной зоны постепенно увеличиваются как в окружном, так и в радиальном направлениях.
- Предисловие
- Введение
- Турбореактивный одноконтурный двигатель (трд)
- Турбореактивный двигатель с форсажом (трдф)
- Двухконтурный турбореактивный двигатель без смешения потоков (трдд)
- Двухконтурный турбореактивный двигатель со смешением потоков (трдДсм)
- Двигатели непрямой реакции
- Турбовальные двигатели (тВаД)
- Турбовинтовые двигатели (твд)
- Часть 1. Основы теории элементов авиационных гтд
- 1.1. Уравнение неразрывности
- 1.2. Уравнение сохранения энергии
- 1.3. Уравнение первого закона термодинамики
- 1.4. Обобщенное уравнение бернулли
- 1.5. Теорема эйлера об изменении количества движения
- Глава 2 тяга, мощность и удельные парамеры авиационных двигателей
- 2.1. Двигатель и силовая установка
- 2.2. Тяга реактивного двигателя
- 2.3. Эффективная тяга силовой установки
- 2.4. Внешнее сопротивление силовой установки и его составляющие
- 2.5. Удельные параметры авиационных гтд
- Удельные параметры гтд прямой реакции
- Удельные параметры гтд непрямой реакции
- Глава 3 теория ступени компрессора гтд
- 3.1. Назначение компрессоров гтд, их типы
- И основные требования к ним
- 3.2. Схема и принцип действия ступени осевого компрессора
- 3.3. Работа, затрачиваемая на вращение колеса ступени
- 3.4. Изображение процесса сжатия воздуха в ступени в p, V- и t,s- координатах
- 3.5. Основные параметры ступени компрессора
- Геометрические параметры
- Газодинамические и кинематические параметры
- 1. Степень повышения давления в ступени
- 2. Адиабатная работа сжатия воздуха в ступени
- 3. Кпд ступени
- 5. Числа Маха на входе в рк и на.
- 6. Коэффициент расхода
- 7. Коэффициент адиабатного напора
- 8. Степень реактивности ступени.
- 3.6. Условия совместной работы элементов ступени, расположенных на различных радиусах
- 3.7. Профилирование ступеней по закону постоянства циркуляции
- 3.8. Параметры и характеристики компрессорных решеток профилей
- Параметры профиля и решетки профилей
- Характеристики решеток профилей
- Влияние чисел м и Re на характеристики компрессорных решеток
- 3.9. Особенности течения воздуха в лопаточных венцах осевого компрессора
- 3.10. Особенности трансзвуковых и сверхзвуковых ступеней осевого компрессора
- 3.11. Особенности вентиляторных ступеней трдд с большой степенью двухконтурности
- 3.12. Схема и особенности работы центробежной ступени компрессора
- 3.13. Работа вращения колеса и основные параметры центробежной ступени
- Глава 4
- 4.1. Основные параметры многоступенчатого компрессора (каскада) и их связь с параметрами ступеней
- 4.2. Формы проточной части осевого компрессора (каскада)
- 4.3. Распределение работы сжатия воздуха между ступенями компрессора (каскада)
- Глава 5 характеристики компрессоров и их регулирование
- 5.1. Общие представления о характеристиках компрессоров и методах их определения
- 5.2. Применение теории подобия к построению характеристик компрессора
- 5.3. Характеристики ступени осевого компрессора
- 5.4. Срывные режимы работы ступени
- 5.5. Характеристики нерегулируемых многоступенчатых компрессоров Совместная работа ступеней в многоступенчатом компрессоре
- Граница устойчивой работы многоступенчатого компрессора
- 5.6. Срывные и неустойчивые режимы работы многоступенчатых компрессоров
- 5.7. Рабочие режимы и запас устойчивости компрессора в системе гтд
- 5.8.Задачи и способы регулирования компрессоров гтд
- Перепуск воздуха
- Поворот лопаток направляющих аппаратов
- Разделение компрессора на каскады (группы ступеней)
- Глава 6 газовые турбины гтд
- 6.1. Назначение турбин гтд и основные
- Требования к ним
- 6.2. Схема и принцип работы ступени турбины
- 6.3. Работа газа на окружности колеса ступени
- 6.4. Изображение процесса расширения газа в ступени в p,V- и I,s- координатах
- 6.5. Основные параметры ступени турбины Геометрические параметры
- Газодинамические параметры
- Кинематические параметры
- 6.6. Потери в ступени турбины и их зависимость от различных факторов
- Потери в ступени турбины
- Влияние параметра u /c1 на кпд ступени
- 6.7. Основные параметры многоступенчатой турбины и их связь с параметрами её ступеней
- 6.8. Способы представления характеристик ступени газовой турбины
- 6.9.Характеристики ступени турбины
- Характеристики ступени турбины
- Глава 7 камеры сгорания гтд
- 7.1. Назначение камер сгорания и основные
- Требования к ним
- 7.2. Основные параметры камер сгорания гтд
- 7.3. Основные закономерности процесса горения топлива
- 7.4. Типы основных камер сгорания гтд и организация процесса горения в них
- 7.5. Характеристики камер сгорания авиационных гтд
- 7.6. Потери полного давления в камерах сгорания гтд
- 7.7. Определение расхода топлива в камерах сгорания
- 7.8. Назначение камер смешения и основные требования к ним
- 7.9. Схемы камер смешения и картина течения в них
- 7.10. Расчет параметров потока за камерой смешения
- Глава 8 входные и выходные устройства авиационных силовых установок
- 8.1.Типы входных устройств и их классификация
- 8.2. Основные параметры входных устройств
- 8.3. Особенности дозвуковых ходных устройств
- 8.4. Организация рабочего процесса в сверхзвуковых входных устройствах внешнего сжатия
- 8.5. Назначение выходных устройств и предъявляемые к ним требования
- 8.6.Схемы, основные параметры и режимы работы дозвуковых выходных устройств
- Скорость истечения газа из суживающегося сопла и режимы его работы
- 8.7. Потери в выходных устройствах и способы их оценки
- 8.8.Устройства реверса тяги
- Турбовальных гтд вертолетов
- Часть 2. Термодинамический цикл, совместная
- 1.2. Зависимость работы и внутреннего кпд реального цикла от π и δ
- Зависимость работы и внутреннего кпд цикла
- Оптимальная степень повышения давления в компрессоре
- Зависимость работы и внутреннего кпд цикла от степени подогрева воздуха δ.
- 1.4. Тяговая работа и тяговый кпд гтд прямой реакции
- 1.5. Полный кпд гтд прямой реакции
- 1.6. Оптимальное распределение работы цикла между контурами в трдд без смешения потоков
- 1.7. Оптимальное значение степени повышения давления в вентиляторе трдд со смешением потоков
- 1.8. Связь удельных параметров трд и трдд с параметрами рабочего процесса
- 1.9. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени повышения давления в цикле
- Зависимость Руд и Судот π для одноконтурных двигателей
- Зависимость Руд и Суд от π для двухконтурных двигателей
- 1.10. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени подогрева рабочего тела в цикле
- Зависимость Руд и СудотΔ для двухконтурных двигателей
- Совместная работа элементов одновальных газогенераторов
- 2.1. Функциональные модули авиационных силовых становок
- 2.2. Управляемые параметры и управляющие факторы
- 2.3. Совместная работа элементов одновальных газогенераторов и одновальных трд
- 2.4. Рабочие линии на характеристике компрессора одновального газогенератора
- 2.5. Критериальные характеристики одновальных газогенераторов
- 2.6. Программы управления одновальных гг и
- Одновальных трд, управляемых по одному параметру
- Рассогласование ступеней компрессора в одновальном гг
- (И одновальном трд)
- Программы управдения одновальных гг и одновальных трд
- Глава 3 Совместная работа элементов и программы управления двухконтурных двигателей
- 3.1. Совместная работа элементов трдДсм
- 3.2. Рабочие линии на характеристике кнд и влияние на них различных факторов
- 3.3. Формирование программ управления трддсм
- Глава 4 характеристики одноконтурных и двухконтурных трд Характеристики одноконтурных трд
- 4.1. Скоростные характеристики трд
- 4.2. Высотные характеристики трд
- 4.3. Дроссельные характеристики трд
- Характеристики двухконтурных трд (трдд)
- 4.4. Скоростные характеристики трдд
- 4.5. Высотные характеристики трдд
- 4.6. Высотно-скоростные характеристики трдд
- 4.7. Дроссельные характеристики трдд
- Глава 5 рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигателей
- 5.1. Удельные параметры тВаД и их зависимость от
- Параметров рабочего процесса
- 5.2. Области применения и особенности термодинамического цикла тВаД
- 5.3. Совместная работа элементов турбовальных двигателей
- 5.4. Особенности регулирования вертолетных турбовальных двигателей
- 5.5. Программы управления вертолетных гтд на режимах ограничения
- 5.6. Высотные характеристики турбовальных двигателей
- 5.7. Дроссельные характеристики турбовальных двигателей
- 5.8. Климатические характеристики турбовальных двигателей
- 5.9. Схемы и основные параметры турбовинтовых и турбовинтовентиляторных двигателей
- 5.10. Оптимальное распределение работы цикла твд и тввд между винтом и реакцией газовой струи
- 5.11. Совместная работа элементов и программы управления твд
- 5.12. Эксплуатационные характеристики твд и тввд
- 5.13. Области применения тввд и перспективы их развития
- Глава 6 неустановившиеся режимы работы авиационных гтд
- 6.1. Требования к динамическим характеристикам гтд
- 6.2. Факторы, влияющие на переходные процессы в гтд. Гипотеза квазистационарности
- 6.3. Уравнения динамики роторов гтд
- 6.4. Факторы, влияющие на избыточную мощность турбины
- 6.5. Изменение параметров рабочего процесса при приемистости и сбросе газа в одновальныхтрд
- 6.6. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухвальных трд
- 6.7. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухконтурных трд
- 6.8. Запуск гтд на земле
- 6.9. Запуск гтд в полете
- Литература
- Часть 1. Основы теории элементов авиационных гтд Глава 1. Основные уравнения движения газа в двигателях и их элементах
- Глава 2. Тяга, мощность и удельные параметры авиационных двигателей
- Глава 3. Теория ступени компрессора гтд
- Глава 4. Многоступенчатые компрессоры
- Глава 5. Характеристики компрессоров и их регулирование
- Глава 6. Газовые турбины гтд
- Глава 7. Камеры сгорания и камеры смешения авиационных гтд
- Глава 8. Входные и выходные устройства авиационных силовых установок
- Часть 2.Термодинамический цикл, совместная работа элементов и характеристики авиационных силовых
- Глава 1. Термодинамический анализ рабочего процесса гтд прямой реакции
- Глава 2. Совместная работа элементов одновальных газогенераторов
- Глава 3. Совместная работа элементов и программы управления двухконтурных двигателей
- Глава 4. Характеристики одноконтурных и двухконтурных трд
- Глава 5. Рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигвтелей
- Глава 6. Неустановившиеся режимы работы авиационных гтд