1.4.2. Регуляторы напряжения
С переходом на системы электроснабжения с генератором переменного тока регуляторы электронного и смешанного типов практически вытеснили электромагнитные регуляторы, которые широко применялись в основном с генераторами постоянного тока. Причиной этому явились следующие обстоятельства:
- ток возбуждения генераторов переменного тока в 1,5 ... 2,0 раза выше, чем генераторов постоянного тока. Контакты электромагнитного регулятора напряжения при таких токах имеют низкую надежность и небольшой срок службы;
- одной из основных задач, решаемых при переходе на генераторы переменного тока, является повышение срока службы генераторной установки. Электронный регулятор имеет ресурс до 200 ... 250 тыс. км пробега, в то время как средний срок службы электромагнитного
регулятора 120 ... 150 тыс. км пробега;
- электронный регулятор не содержит подвижных частей, подгорающих контактных поверхностей и пружин и поэтому не подвержен разрегулировкам в процессе эксплуатации, что характерно для электромагнитного регулятора.
Однако на некоторых моделях автомобилей еще устанавливают электромагнитные регуляторы, учитывая их невысокую стоимость.
На рис. 1.24 представлена принципиальная схема регулирования напряжения генератора электромагнитным регулятором.
Рис. 1.24.
В качестве примера двухступенчатого регулятора напряжения электромагнитного типа может быть представлен реле - регулятор РР380 (рис.1.25)
Рис. 1.25.
Регулировочная характеристика регулятора напряжения РР380 представлена на рис. 1.26.
Рис. 1.26.
Для увеличения тока возбуждения и срока службы регулятора напряжения были разработаны регуляторы смешанного типа. На рис. 1.27. изображена принципиальная схема контактно-транзисторного регулятора смешанного типа, в котором основной ток - ток возбуждения - проходит через силовой транзистор, а роль контактов сводится к коммутированию небольшого тока управления транзистором. Транзистор VT1 работает в режиме ключа. Управляющим органом являются контакты, включенные в цепь базы. Чувствительный элемент - обмотка электромагнита, включенная на напряжение генератора.
Рис. 1.27.
При напряжении генератора, меньшем регулируемого, транзистор VT1 открыт, так как имеется его ток базы. Сопротивление цепи возбуждения определяется лишь сопротивлением обмотки и с увеличением частоты вращения ротора напряжение генератора возрастает. При напряжении генератора выше регулируемого усилие электромагнита преодолевает сопротивление пружины и контакты замыкаются. В результате этого шунтируется переход «эмиттер-база», транзистор закрывается и сопротивление цепи возбуждения увеличивается, так как ток возбуждения проходит по добавочному резистору Rд. Уменьшение тока возбуждения вызывает уменьшение магнитного потока, ЭДС напряжения, что в свою очередь приводит к ослаблению усилия электромагнита, и контакты разомкнутся. Этот процесс повторяется периодически и напряжение генератора колеблется около регулируемого значения.
Регулятора напряжения смешанного типа имеет регулятор напряжения РН с германиевым транзистором VT1 и реле защиты РЗ.
Рис. 1.28
Чувствительным элементам является обмотка РН, которая включена по схеме с ускоряющим резистором R1. Эмиттерная цепь включает диод VD2, служащий для обеспечения необходимого закрывающего напряжения на входе транзистора.
После включения замка зажигания ВЗ до момента срабатывания регулятора напряжения, ток возбуждения проходит по следующим цепям:
клемма «ВЗ» -> диод VD2 -> «эмиттер-коллектор» VT1 —> клемма «Ш» -> обмотка возбуждения -> «масса». Помимо указанных цепей, ток идет по обмотке РН: клемма «ВЗ» —> диод VD2 —> ускоряющий резистор R1 —> обмотка HP -> термокомпенсационный резистор R-, -> клемма «М» -> «масса».
При достижении регулируемого напряжения контакты РН2 замкнутся. При этом на базу транзистора будет подан потенциал батареи (положительный). Потенциал эмиттера становится несколько ниже потенциала базы за счет падения напряжения на диоде VD2. Транзистор закрывается. В этом случае ток возбуждения, протекая по последовательно соединенным резисторам R1 и Rд, уменьшается, что приводит к уменьшению магнитного потока обмотки возбуждения и напряжения генератора. При этом контакты РН2 размыкаются, транзистор открывается и описанный процесс повторяется, обеспечивая постоянство регулируемого напряжения. При изменении тока в обмотке возбуждения индуцируется ЭДС самоиндукции, достигающая нескольких сотен вольт. Для устранения перенапряжения применяется гасящий диод VD3. Ток самоиндукции замыкается по цепи: «-» обмотки возбуждения —> гасящий диод VD3 -> клемма «М» —> «+» обмотки возбуждения.
При малой частоте вращения ротора генератора потенциал точки а выше потенциала точки б и ток идет от а к б по обмотке реле защиты РЗ и резистору обратной связи R2. С увеличением частоты вращения разность потенциалов между точками а и б уменьшается, а затем меняется на противоположную. Однако сила тока, протекающего по РЗ как в прямом, так и в обратном направлении, незначительна, поэтому контакты РЗ остаются разомкнутыми. При коротком замыкании обмотки возбуждения на «массу» напряжение генератора падает и замыкаются контакты РН1. При этом обмотка РЗ попадает под полное напряжение батареи, что приводит к замыканию контактов РЗ. В этом случае на базу транзистора подается «+» батареи и транзистор закрывается, что предохраняет его от перегрузки током.
Преимущество контактно-транзисторных регуляторов заключается в том, что контакты, будучи нагружены малым током, работают в гораздо более легких условиях - не подгорают и не изнашиваются. Кроме того, сила тока возбуждения определяется лишь характеристиками транзистора и не влияет на работоспособность контактов.
Недостатком регулятора смешанного типа является нестабильность регулируемого напряжения, так как вследствие старения изменяются характеристики возвратной пружины регулятора. Поэтому в эксплуатации данный регулятор, так же как и электромагнитный, должен периодически проверяться.
Эти недостатки полностью исключены в электронных регуляторах напряжения, принципиальная схема которого приведена на рис. 1.29, где в цепь возбуждения также включен транзистор, работающий в режиме ключа. Функцию чувствительного элемента выполняет стабилитрон VD3. Задающими элементами являются резисторы R1 и R3.
При напряжении генератора ниже регулируемого стабилитрон VD3 закрыт, закрыт транзистор VT2, а транзистор VT1 открыт. Сопротивление цепи возбуждения минимально и с увеличением частоты вращения ротора напряжение генератора увеличивается.
Рис.1.29.
При напряжении генератора выше регулируемого стабилитрон пробивается, транзистор VT2 открывается, что приводит к закрытию транзистора VT1, так как на его базу подается положительный потенциал. В цепь возбуждения включается добавочный резистор и напряжение генератора падает. Уменьшение напряжения вызывает закрывание стабилитрона, закрытие транзистора VT2 и открытие транзистора VT1. Этот процесс повторяется с большой частотой, в результате напряжение генератора колеблется около регулируемого значения.
Электронные регуляторы обладают более высокой надежностью и стабильностью регулируемого напряжения, чем электромагнитные и смешанные. Недостатком является сложность изменения регулируемого напряжения в условиях эксплуатации.
Выходная цепь регулятора регулятора напряжения Я112-А (рис. 131)
состоит из транзистора VT5, переключающегося с помощью управляющего транзистора VT2 и промежуточного транзистора VT4. Роль чувствительного элемента выполняет стабилитрон VD1, подключенный к входному высокоомному делителю напряжения R1, R2.
Рис. 1.31.
Схема содержит цепочку обратной связи R4, С1 для повышения четкости переключения транзисторов и уменьшения времени перехода схемы из одного состояния в другое. Конденсатор С2 служит для фильтрации входного напряжения, поступающего на транзистор VT2.
При напряжении в бортовой сети ниже регулируемого транзисторы VT5 и VT4 открыты, так как имеется ток их баз, протекающий по следующей цепи: клемма «В» —> резистор R5—> диод VD3—> база-эмиттер транзистора VT4 —> база-эмиттер транзистора VT5 —> клемма «-» —> «масса». При этом ток возбуждения приходит по следующей цепи: клемма «В» —> клемма «В'» —> обмотка возбуждения генератора —> клемма «Ш» —> коллекторно-эмиттерный переход транзистора VT5—> клемма «-» —> «масса».
Как только напряжение достигает заданного уровня, стабилитрон VD1 пробивается и транзистор VT2 открывается. Сопротивление этого транзистора становится минимальным и шунтирует эмиттерно-базовый переход транзисторов VT5 и VT4, что приводит к их закрыванию. Схема регулятора напряжения переключается в состояние, при котором транзистор VT2 открыт, а VT5 и VT4 заперты. Ток возбуждения генератора и выпрямленное напряжение начинают падать. При этом стабилитрон и транзистор VT2 закрываются, транзисторы VT5 и VT4 открываются и процесс повторяется.
Диод VD3 служит для улучшения закрывания основного транзистора при открытом транзисторе VT2 благодаря дополнительному падению напряжения на этом диоде.
Диод VD6 служит для гашения ЭДС самоиндукции обмотки возбуждения генератора и защиты транзистора от перенапряжения в момент его закрывания.
- Оглавление
- Предисловие
- Тема1. Система электроснабжения
- 1.2.3. Характеристики генераторов переменного тока
- 1.4. Автоматическое регулирование напряжения в бортовой сети автомобиля
- 1.4.2. Регуляторы напряжения
- 1.5.7. Способы заряда аккумуляторных батарей
- 1.5.8. Параллельная работа генератора и аккумуляторной батареи. Зарядный баланс
- Глава 2. Система пуска
- 2.1. Общие сведения
- 2.2. Основные характеристики аккумуляторной батареи в режиме пуска
- 2.3. Устройство и принцип действия стартера
- 2.3.5. Электрические схемы управления стартером
- 2.5. Анализ работы системы электростартерного пуска
- Вопросы для самоконтроля
- Глава 3. Система зажигания
- 3.2. Классификация батарейных систем зажигания
- 3.3. Требования к системам зажигания. Основные параметры
- 3.4. Классическая система зажигания
- 3.5. Рабочий процесс батарейной системы зажигания
- 3.5.1. Общие сведения
- 3.5.2. Замыкание контактов прерывателя
- 3.5.3. Размыкание контактов прерывателя
- 3.5.4. Пробой искрового промежутка свечи
- 3.6. Характеристики классической системы зажигания
- 3.6.1. Факторы, влияющие на вторичное напряжение, развиваемое системой зажигания
- 3.6.2. Энергия искрового разряда
- 3.6.3. Недостатки классической системы зажигания
- 3.7. Электронные системы зажигания
- 3.7.1. Основные направления создания перспективных систем зажигания
- 3.7.2. Особенности рабочего процесса транзисторной системы зажигания
- 3.7.3. Принципы построения узлов бесконтактных систем зажигания для автомобильных двс
- Магнитоэлектрические датчики.
- Направление
- 3.7.4. Электронное распределение высокого напряжения по цилиндрам двигателя
- 3.7.5. Особенности конструкций аппаратов электронных систем зажигания для автомобильных двигателей
- 3.7.6. Преимущества электронных систем зажигания
- 3.8. Искровые свечи зажигания
- 3.8.1. Общие сведения
- 3.8.2. Условия работы свечи на двигателе
- 3.8.3. Устройство свечей зажигания
- 3.8.4. Тепловая характеристика и маркировка свечей
- 3.9. Диагностирование систем зажигания
- Глава 4. Системы освещения и сигнализации
- 4.1. Общие сведения
- 4.2. Основные принципы формирования светораспределения систем освещения и сигнализации
- 4.3. Классификация систем освещения
- 4.4. Нормирование светотехнических характеристик головных фар
- 4.5. Конструкция современных головных фар
- 4.6. Противотуманные фары
- 4.7. Классификация светосигнальных приборов. Нормирование основных характеристик
- 47.1. Общие сведения
- 4.7.2. Габаритные огни
- 4.7.3. Сигналы торможения
- 4.7.4. Указатели поворота и их боковые повторители
- 4.8. Конструкция светосигнальных приборов
- 4.9. Источники света
- 4.10. Техническое обслуживание и диагностирование систем освещения и сигнализации в эксплуатации
- Вопросы для самоконтроля
- Глава 5. Информационно-диагностическая система
- 5.1. Общие сведения
- 5.2. Контрольно-измерительные приборы
- 5.2.1. Приборы измерения давления и разрежения
- 5.2.2. Приборы измерения температуры
- 5.2.3. Приборы измерения уровня топлива
- 5.2.4. Приборы контроля зарядного режима
- 5.2.5. Приборы контроля режима движения и частоты вращения коленчатого вала двигателя
- 5.3. Бортовая система контроля
- 5.4. Система встроенных датчиков
- 5.5. Маршрутные компьютеры
- 5.6. Автомобильные навигационные системы
- 5.7. Панели приборов
- Вопросы для самоконтроля
- Глава 6. Электронные системы автоматического управления агрегатами автомобиля
- 6.1. Общие сведения
- 6.2. Электронное управление двигателем
- 6.2.1. Электронные системы управления топливоподачей бензиновых двигателей
- 6.2.2. Экономайзер принудительного холостого хода с электронным управлением
- 6.2.3. Электронные системы управления, топливоподачей дизелей
- 6.2.4. Основные компоненты эсау двигателем Электробензонасосы
- Электроуправляемые форсунки
- Исполнительные механизмы управления частотой вращения коленчатого вала на холостом ходу
- Датчики для определения нагрузки двигателя
- Датчики частоты вращения и положения коленчатого и распределительного валов
- Датчик кислорода
- Датчики температуры
- Датчик детонации
- Главное реле и реле бензонасоса
- 6.3. Электронное управление подвеской
- 6.4. Электронные антиблокировочные системы
- Принцип действия системы и типы абс
- Способы диагностирования
- 6.5. Гидромеханическая передача с электронным управлением
- 6.6. Электронное управление положением фар
- 6.7. Автоматическое управление стеклоочистителем
- 6.8. Автоматическая блокировка дверей
- Вопросы для самоконтроля
- Глава 7. Вспомогательное электрооборудование
- 7.1. Электропривод вспомогательного электрооборудования автомобиля
- 7.2. Стеклоочистители, омыватели и фароочистители
- 7.3. Звуковые сигналы
- 7.4. Электронные противоугонные системы
- Вопросы для самоконтроля
- Глава 8. Схемы электрооборудования автомобилей. Коммутационная аппаратура
- 8.1. Общие сведения
- 8.2. Коммутационная аппаратура
- 8.3. Провода и способы защиты от аварийных режимов
- 8.4. Потери напряжения в электрических сетях автомобиля
- 8.5. Принципы построения схем электрооборудования автомобилей
- Вопросы для самоконтроля
- Список литературы