Направление
Рис. 3.37.
Коммутаторы. Электронным коммутатором бесконтактной системы зажигания называется устройство, выполняющее следующие основные функции:
- формирование выходного токового импульса необходимой амплитуды и длительности, подаваемого к первичной обмотке катушки (или катушек) зажигания для обеспечения заданного уровня высокого напряжения и энергии искры;
- обеспечение момента искрообразования в соответствии с заданным фронтом управляющего импульса, поступающего на вход коммутатора;
- стабилизация параметров выходного токового импульса при колебаниях напряжения бортовой сети автомобиля и воздействии внешних факторов.
Многие типы коммутаторов выполняют дополнительно защитные функции, такие, как:
- предотвращение протекания первичного тока через первичную обмотку катушки зажигания при включенном замке зажигания и неработающем двигателе;
- обеспечение стабильного питания и защита от импульсов перенапряжения в бортовой сети автомобиля в аномальных режимах микропереключателя на эффекте Холла;
- обеспечение ограничения амплитуды импульса вторичного напряжения в аномальных режимах (например, в режиме открытой цепи).
На входные клеммы коммутатора поступают импульсы управления, формируемые бесконтактным датчиком углового положения коленчатого вала двигателя (УПКВ) или электронным регулятором опережения зажигания с открытым коллектором. Выходом (нагрузкой) коммутатора является первичная обмотка катушки зажигания или обмотки катушек зажигания.
В последнем случае электронный коммутатор выполняет функцию распределителя высоковольтных импульсов по цилиндрам двигателя.
Рис. 3.38.
На рис. 3.38 представлена классификация транзисторных коммутаторов, применяемых на автомобилях. Множество коммутаторов БСЗ можно разделить на две подгруппы по принципиальному функциональному признаку:
коммутаторы с постоянной, не зависящей от частоты вращения коленчатого вала скважностью выходного первичного импульса тока;
коммутаторы с нормируемой скважностью выходного импульса тока.
Общим для обеих групп коммутаторов является наличие в выходной цепи мощного выходного транзистора, способного коммутировать токи амплитудой до 10 А в индуктивной нагрузке коллекторной цепи.
Рассмотрим основные схемы управления выходным транзистором системы зажигания и способы его защиты.
Для того чтобы включить выходной транзистор и обеспечить режим насыщения, необходимо подать в базу управляющий ток
(3.12)
где Iр - сила коллекторного тока транзистора к моменту прерывания; Bcт - статический коэффициент усиления по току транзистора;
kн - коэффициент насыщения, который должен быть больше 1 (выбирается в пределах 2...4 для ключевых каскадов).
В качестве источника управляющего тока используется каскад предварительного усиления, включенный, как правило, по схеме с общим коллектором (рис. 3.39,а). Такое включение является наиболее экономичным с точки зрения рассеиваемой мощности. Когда транзистор VT1 открыт в базу транзистора VT2 течет ток
причем значение iy должно удовлетворять условию (3.12).
Значения напряжений насыщения транзисторов VT1 и VT2 выбираются из паспортных данных, резистор Rк служит для ограничения коллекторного тока через транзистор VT1. Если транзистор VT1 закрыт, управляющий ток iу = 0 и база транзистора VT2 зашунтирована на корпус через резистор Rбэ, следовательно, транзистор надежно закрыт. Резистор Rбэ улучшает условия закрывания транзистора VT2. Сопротивление резистора Rбэ в зависимости от типа транзистора выбирается от 10 до 1000 Ом.
Недостатком схемы является значительное изменение управляющего тока при колебаниях питающего напряжения. Так как номинал резистора Rк рассчитывается при минимальном значении питающего напряжения, то при больших значениях питающего напряжения мощность, рассеиваемая на резисторе Rк, равна 10...12 Вт, если используются выходные транзисторы с Вст = 5...10. При использовании выходных транзисторов, имеющих Вст = 100...150, рассеиваемая мощность на резисторе Rк снижается до 3 Вт. Мощность, рассеиваемая в каскаде предварительного усиления, может быть снижена приблизительно в 3 раза за счет стабилизации управляющего тока. С этой целью в схему введены токоизмерительный резистор Rт и транзистор обратной связи VT3 (рис. 3.39,б). Падение напряжения на резисторе Rт, от протекающего через него управляющего тока Iуст приложено к участку база - эмиттер транзистора VT3. Любое отклонение значения управляющего тока от Iуст, например при колебаниях питающего напряжения, вызывает изменение напряжения на резисторе Дт и, следовательно, изменение режима работы транзистора VT3. При увеличении управляющего тока потенциал на коллекторе транзистора VT3 начинает уменьшаться, транзистор VT1 закрывается, уменьшая тем самым ток управления до заданного уровня Iуст. При уменьшении тока управления ниже уровня Iуст потенциал на коллекторе транзистора VT3 возрастает, управляющий транзистор VT1 открывается в большей степени и ток управления возрастает до уровня Iуст. Таким образом обеспечивается стабилизация управляющего тока на уровне Iуст.
Способы защиты выходных транзисторов от перенапряжений. Необходимость в защите выходного транзистора от перенапряжений возникает в ряде специфических режимов работы системы зажигания. Например, режим открытой вторичной цепи является аварийным. В этом случае значительно увеличивается амплитуда импульса первичного напряжения, прикладываемого к участку коллектор - эмиттер выходного транзистора, что может вызвать пробой перехода. Кроме того, увеличивается и амплитуда импульса вторичного напряжения, что может вызвать пробой изоляции вторичной цепи катушки зажигания и, следовательно, отказ системы зажигания
Рис. 3.39.
Рис. 3.40.
Для ограничения амплитуды импульса первичного напряжения на допустимом для выходного транзистора уровне используют схемы защиты, выполненные, как правило, на нелинейных элементах - стабилитронах и варисторах.
Наиболее простой является схема, представленная на рис 3.40,а. В этой схеме защитный стабилитрон VD1 включен параллельно участку коллектор - эмиттер транзистора VT1. Напряжение пробоя стабилитрона VD1 выбирают немного меньшим Uкэ доп транзистора VT1. Увеличение первичного напряжения до U1 < Uст VD не приводит к сбою стабилитрона. При увеличении первичного напряжения до U1 > Uст VD стабилитрон пробивается и через него начинает протекать ток iст, при этом амплитуда импульса первичного напряжения ограничивается на допустимом для транзистора VT1 уровне. Амплитуда импульса тока через стабилитрон составляет 2...4 А, что влечет за собой применение мощных стабилитронов.
Создание новых силовых транзисторов, способных коммутироать большую импульсную энергию (более 200 мДж), а также стремление уменьшить габариты коммутатора позволили осуществить защиту выходного транзистора VT1 путем введения стабилитрона параллельно его базоколлекторному участку (рис. 3.40,б). Этот способ позволяет уменьшить импульсный ток через стабилитрон в Вст раз (Вст - статический коэффициент усиления по току выходного транзистора VT1).
При увеличении первичного напряжения до U1 > Uст стабилитрон пробивается и в базу выходного транзистора втекает ток, который приоткрывает транзистор VT1 на время действия импульса перенапряжения. Проводящий участок коллектор - эмиттер транзистора VT1 шунтирует источник напряжения, ограничивая тем самым амплитуду первичного импульса на допустимом уровне.
Существуют также другие более сложные схемные решения, позволяющие еще больше снизить импульсный ток через стабилитрон.
Конденсатор С1, включенный параллельно участку коллектор -эмиттер выходного транзистора, служит для предотвращения выхода транзистора в область лавинного пробоя в процессе его закрывания, а также является элементом ударного колебательного контура возбуждения, т. е. определяет величину и скорость нарастания вторичного напряжения, развиваемого системой зажигания. Резистор R1 ограничивает емкостный ток через участок коллектор - эмиттер транзистора VT1 в момент открывания последнего, если конденсатор С1 заряжен.
Защита выходного транзистора от инверсного включения. После закрывания выходного транзистора в первичном контуре катушки зажигания возникает колебательный процесс. В течение действия отрицательной полуволны импульса первичного напряжения транзистор оказывается включенным в инверсном режиме, что недопустимо для некоторых типов транзисторов. Инверсное включение транзистора также возможно в случае перепутывания полярности аккумуляторной батареи.
Способы защиты от инверсного включения представлены на рис. 3.41.
Для защиты транзистора VT1 от инверсного включения последовательно в выходную цепь коммутатора включают полупроводниковый диод VD1 (рис. 3.41,а), рассчитанный на прямой ток, равный по значению току разрыва.
Рис. 3.41.
Последовательное включение силового диода имеет свои отрицательные стороны. Во-первых, увеличиваются тепловые потери в выходной цепи коммутатора; во-вторых, усложняется его конструкция и, наконец, в-третьих, значительно снижается сила тока разрыва в период пуска двигателя при сильно разряженной аккумуляторной батарее.
Другим способом защиты выходного транзистора VT1 от инверсного включения является включение силового диода VD1 параллельно участку коллектор - эмиттер транзистора (рис. 3.41,б). При этом включении разрушается колебательный процесс после первой полуволны первичного напряжения. Процесс становится апериодическим. Параллельное включение диода позволяет уменьшить падение напряжения в выходной цепи коммутатора, рассеиваемую мощность и габариты. Защитный диод выполняется на одном кристалле с выходным транзистором. На рис. 3.41,б приведена схема однокристального транзистора Дарлингтона, выполненного на транзисторах VT1 и VT2. Параллельно участку коллектор - эмиттер включен мощный диод VD1.
Ограничение амплитуды импульса первичного тока. Функционально простые коммутаторы с постоянной скважностью (КПС) не содержат специального устройства ограничения тока. В системах зажигания, использующих КПС, применяется пассивное ограничение уровня тока за счет последовательного включения в нагрузочную цепь коммутатора добавочного сопротивления, которое; закорачивается в режиме пуска.
Коммутаторы с нормируемой скважностью (КНС) используют активное ограничение уровня тока. На рис. 3.42 представлен один из наиболее распространенных вариантов схемы ограничения тока. Принцип действия схемы состоит в следующем. После открывания выходной транзистор VT3 вводится в насыщение током iу, что обеспечивает низкое остаточное напряжение на выходе коммутатора. Процесс характеризуется нарастанием первичного тока. Пока ток, протекающий через выходной транзистор VT3 и токоизмерительный резистор Rи, включенный последовательно в эмиттерную цепь транзистора, ниже допустимого уровня ограничения, транзистор VT2 закрыт. При достижении током i1 допустимого уровня транзистор VT2 начинает открываться. Потенциал на его коллекторе понижается, что приводит к уменьшению силы тока управления iy. Транзистор VT3 выходит из режима насыщения в активный режим. Напряжение на выходе коммутатора возрастает до уровня, при котором, поддерживается заданный ток ограничения.
Рис. 3.42.
Регулировка уровня ограничения тока производится резисторами R1, R2 делителя во входной цепи транзистора VT2. Введение в коммутатор активного ограничителя тока позволяет не только защищать коммутационный транзистор от чрезмерного тока, но также стабилизировать ток разрыва при колебаниях питающего напряжения в широких пределах, тем самым обеспечивая неизменные выходные характеристики системы зажигания.
Однако активный режим работы связан с большим выделением тепловой мощности на выходном транзисторе (порядка 60...80 Вт), что накладывает жесткие требования на продолжительность включенного состояния выходного транзистора. Время включенного состояния или время накопления энергии должно регулироваться таким образом, чтобы минимизировать или исключить вообще нахождение выходного транзистора в режиме ограничения в рабочем диапазоне частот вращения вала двигателя. Эту задач решают регуляторы времени накопления.
Программный регулятор времени накопления запасаемой энергии. Регулятор (типовая схема которого приведена на рис. 3.43) содержит интегратор, выполненный на усилителе DA1 и конденсаторе С1, устройство сброса на транзисторе VT1, диоде VD1 и резисторах R2, R3 и компаратор, выполненный на усилителе DA2.
Рис. 3.43.
Принцип работы схемы иллюстрируется временными диаграммами (рис.3. 44, где: а – n1; б – n2). В период действия низкого уровня сигнала датчика Uвх конденсатор С1 (см. рис. 3.43) интегратора DA1 заряжается до максимального за период значения напряжения Uc1 за счет смещения Ucм1. При высоком уровне сигнала датчика конденсатор С1 разряжается. Токи заряда и разряда соотносятся со скважностью сигнала датчика таким образом, что напряжение на выходе интегратора после разряда конденсатора опять достигает опорного значениям Ucм1.
Рис. 3.44.
Если напряжение интегратора сравнивается в компараторе DA2 с постоянным пороговым значением напряжения Ucм2, то на выходе компаратора формируется независимо от продолжительности периода сигнала датчика сигнал определенной длительности времени tн перед следующим импульсом зажигания. Одновременно этот сигнал используется для того, чтобы быстро разрядить конденсатор С1 через транзистор VT1 и привести выход интегратора к начальному значению Ucм1.
Так как необходимая продолжительность включения катушки зажигания зависит также от питающего напряжения, для коррекции продолжительности включения порог компаратора Ucм2 делается зависящим от питающего напряжения.
Выбором постоянных времени заряда и разряда конденсатора и опорного уровня напряжения компаратора обеспечивается требуемый закон изменения скважности выходного импульса тока в зависимости от частоты следования входных импульсов.
Рассмотренный тип регулятора представляет собой регулятор с программным регулированием. Недостатком коммутаторов с программным регулированием является невозможность учета всех факторов, влияющих на силу тока разрыва в катушке зажигания. К таким факторам можно отнести, например, разброс параметров первичной обмотки катушки зажигания (R1, L1), нестабильность скважности сигнала датчика в процессе эксплуатации, разброс номиналов элементов схемы при воздействии окружающей среды. Отсюда невысокая точность приближения параметров токового импульса к оптимальным значениям. Лучших результатов позволяют добиться коммутаторы с адаптивным регулированием скважности выходного импульса тока.
Адаптивный регулятор времени накопления. Типовая схема адаптивного регулятора (рис. 3.45) отличается от схемы программного регулятора наличием стабилизирующей обратной связи, которая позволяет поддерживать постоянство уровня тока в катушке зажигания независимо от воздействия многочисленных внешних факторов (например, напряжения питания) за счет коррекции скважности выходного токового сигнала.
Рис. 3.45.
Графически принцип работы схемы адаптации изображен на рис.3.46, а - в случае превышения длительности импульса тока; б - при уменьшении амплитуды тока ниже номинального значения. Устройство коррекции представляет собой интегратор (DA3, С2), выходное напряжение Uкор которого задает опорный уровень компаратора DA2. Если опорный уровень изменяется, то изменяется и момент срабатывания компаратора DA2. При более низком напряжении Uсм2 катушка зажигания включается на более короткий период времени (рис. 3.46,а). При более высоком опорном напряжении Uсм2 катушка включается на более продолжительный период времени (рис. 3.46,б).
Рис. 3.46.
Критерием для регулировки уровня является сигнал компаратора DA4 (см. рис. 3.45). Если амплитуда выходного тока достигает своего номинального значения, компаратор DA4 включается и на его выходе формируется сигнал высокого уровня. Происходит разряд конденсатор С2, интегратора DA3,инапряжение Uкор на его выходе уменьшается. Низкому уровню напряжения на выходе компаратора DA4 соответствует медленный заряд конденсатора С2 за счет источника Uсм3, что приводит к увеличению напряжения на выходе интегратора DA3 и, следовательно, увеличению напряжения Uсм2.
Изменение периода следования управляющих импульсов сигналов датчика при ускорении или замедлении двигателя вносит погрешность процесс регулирования. При резком увеличении частоты вращения двигателя возможно уменьшение периода накопления энергии относительно его значения, получаемого при плавном изменении частоты. Это может привести к пропускам искрообразования. Для исключения этого явления расчетное значение скважности выходного токового импульса КНС выбирается таким образом, чтобы при максимальных ускорениях период накопления энергии не снижался ниже критического значения. Однако в установившемся режиме это приводит к излишнему рассеиванию мощности.
Контроллеры. Контроллер представляет собой электронное устройство, предназначенное для управления углом опережения зажигания в функции ряда параметров двигателя. Он также обеспечивает управление электроклапаном экономайзера принудительного холостого хода (ЭПХХ) и в ряде случаев принимает на себя функцию регулирования накопления энергии катушке зажигания. В состав электронной системы зажигания контроллер может входить как автономный конструктивно законченный узел либо как интегрированный с транзисторным коммутатором электронный блок.
Рассмотрим основные принципы электронного регулирования момент зажигания. Из всего многообразия систем зажигания с регулируемым углом опережения зажигания можно выделить два основных направления их реализации: системы с аппаратурным и программным принципами построения.
Алгоритм работы регуляторов угла опережения с аппаратурной реализацией («жесткой» логикой) определяется логическими связями между ее элементами. При видоизменении характеристик угла опережения зажигания необходимо изменить эти связи, что вызывает определенные неудобства как на этапе проектирования таких устройств, так и при промышленном производстве, когда возможны модификации двигателей, требующие различных характеристик. Отсутствие гибкости, т. е. приспосабливаемое™ таких устройств к различным характеристикам, является их основным принципиальным недостатком.
Кроме того, такие регуляторы реально позволяют воспроизводить лишь относительно простые характеристики и не обеспечивают реализацию значительно более сложных оптимальных характеристик, имеющих целый ряд изломов, с положительными и отрицательными участками.
Значительно большими возможностями обладают системы управления углом опережения зажигания с памятью. В таких системах, как правило, программа работы определяется логическими связями между функциональными устройствами, а данные, определяющие индивидуальные особенности их характеристик, воспроизводимых системой, хранятся в ее памяти в виде комбинаций кодов чисел. Основным достоинством этого стандартного функционально законченного устройства является возможность длительного хранения большого массива информации (в том числе закодированной информации об угле опережения зажигания) и ее изменения на всех этапах разработки системы без существенных дополнительных затрат. Применение памяти дает возможность использовать цифровую систему зажигания на различных двигателях.
рис.3.47
Структурная схема одного из вариантов системы с памятью приведена на рис. 3.47. Зубчатый диск, закрепленный на коленчатом валу двигателя, имеет равномерно расположенные по всей окружности зубья. При вращении диска электромагнитный датчик 1 частоты вращения вырабатывает серию импульсов, число которых определяет угловое положение коленчатого вала относительно ВМТ. Кроме того, на диске устанавливается дополнительный зуб, при совпадении оси которого с электромагнитным датчиком 2 начала отсчета на выходе последнего формируется импульсный сигнал о достижении поршнем первого цилиндра ВМТ.
Частота вращения коленчатого вала двигателя может определяться путем подсчета числа импульсов, поступающих с датчика 1 за эталонный промежуток времени, или путем подсчета числа импульсов от кварцевого генератора за период импульсов датчиков 1 и 2.
Нагрузка двигателя определяется при помощи датчика абсолютного давления (разрежения) 3, устанавливаемого во впускном коллекторе. Аналоговый сигнал с датчика преобразуется в цифровую форму с помощью аналого-цифрового преобразователя. Система имеет несколько дополнительных информационных входов 4 для других датчиков, например датчика температуры охлаждающей жидкости, детонации, положения дроссельной заслонки и др. Сигналы с датчиков формируются с помощью специальных схем 5 (интерфейсов) перед подачей их в узел обработки данных 6. Одним из основных устройств узла обработки является постоянное запоминающее устройство 7 (ПЗУ).
На основании сигналов о частоте вращения коленчатого вала и нагрузке двигателя узел обработки данных формирует адрес, по которому осуществляется обращение к ПЗУ и выборка (считывание) значения угла опережения зажигания, соответствующего данному режиму работы двигателя. Это значение в дальнейшем может корректироваться в зависимости от показаний других датчиков. При Достижении коленчатым валом двигателя положения, соответствующего расчетному значению, угла опережения зажигания, узел обработки данных формирует сигнал управления коммутатором 8.
Из рассмотренного принципа работы системы следует ряд важных выводов:
- погрешности привода распределителя в данной системе сведены к нулю благодаря работе непосредственно от зубчатого диска, жестко укрепленного на коленчатом валу двигателя;
- частота вращения коленчатого вала двигателя определяется путем подсчета числа импульсов, формируемых датчиком оборотов за заданный период времени, который в принципе может задаваться с любой реальной точностью;
- характеристики системы могут изменяться путем изменения содержимого ПЗУ;
- система может воспроизводить характеристики угла опережения зажигания практически с любой точностью, определяемой лишь числом зубьев диска;
- так как все перечисленные операции проводятся цифровыми узлами, характеристики системы практически не подвержены временным и температурным изменениям.
Благодаря гибкости системы такого типа наиболее полно удовлетворяют современным требованиям. На рис. 3.48 приведена трехмерная калибровочная диаграмма, представляющая взаимосвязь трех параметров двигателя: частоты вращения коленчатого вала, нагрузки, угла опережения зажигания.
Рис. 3.48.
Из приведенного примера следует, что характеристика оптимальных углов опережения зажигания цифровой системы с гибкой памятью значительно сложнее характеристик, которые могут быть воспроизведены системами с механическими автоматами. Одним из основных недостатков этих систем, обусловленных сложностью, является необходимость их реализации в виде заказных больших интегральных схем (БИС).
Выполнение этого условия обязательно, если принять во внимание жесткие требования к надежности работы системы и массовости выпуска. Недостатком является также необходимость изменять аппаратную часть при изменении характеристик угла опережения зажигания или алгоритма работы системы зажигания.
Этих недостатков лишены системы с программируемой логикой, в которых при изменении алгоритма работы системы необходимо лишь заменить управляющую программу и ввести данные в ПЗУ. Такие системы обычно реализуются на базе микропроцессоров.
Системы, построенные на базе микропроцессоров, по основным принципам работы практически не отличаются от ЭВМ, широко используемых во многих областях науки и техники. Основное отличие заключается лишь в том, что последние достижения в области микроэлектроники позволили выполнять ЭВМ в виде одной или нескольких БИС, поэтому они получили название микроЭВМ.
Одним из объектов, на которых по прогнозам ожидается массовое применение микроЭВМ, является автомобиль. Это объясняется тем, что системы автомобиля имеют достаточно сложные функции регулирования, для реализации которых требуется выполнение большого объема вычислений. И микроЭВМ с их способностью быстро анализировать большой объем информации являются идеальным решением данной проблемы. К этому еще необходимо добавить, что одна микроЭВМ может управлять несколькими системами автомобиля. Последнее утверждение чрезвычайно важно, так как ряд задач, в том числе и задача повышения эффективности работы двигателя, носит комплексный характер, затрагивающий не только систему зажигания, но и систему топливоподачи.
- Оглавление
- Предисловие
- Тема1. Система электроснабжения
- 1.2.3. Характеристики генераторов переменного тока
- 1.4. Автоматическое регулирование напряжения в бортовой сети автомобиля
- 1.4.2. Регуляторы напряжения
- 1.5.7. Способы заряда аккумуляторных батарей
- 1.5.8. Параллельная работа генератора и аккумуляторной батареи. Зарядный баланс
- Глава 2. Система пуска
- 2.1. Общие сведения
- 2.2. Основные характеристики аккумуляторной батареи в режиме пуска
- 2.3. Устройство и принцип действия стартера
- 2.3.5. Электрические схемы управления стартером
- 2.5. Анализ работы системы электростартерного пуска
- Вопросы для самоконтроля
- Глава 3. Система зажигания
- 3.2. Классификация батарейных систем зажигания
- 3.3. Требования к системам зажигания. Основные параметры
- 3.4. Классическая система зажигания
- 3.5. Рабочий процесс батарейной системы зажигания
- 3.5.1. Общие сведения
- 3.5.2. Замыкание контактов прерывателя
- 3.5.3. Размыкание контактов прерывателя
- 3.5.4. Пробой искрового промежутка свечи
- 3.6. Характеристики классической системы зажигания
- 3.6.1. Факторы, влияющие на вторичное напряжение, развиваемое системой зажигания
- 3.6.2. Энергия искрового разряда
- 3.6.3. Недостатки классической системы зажигания
- 3.7. Электронные системы зажигания
- 3.7.1. Основные направления создания перспективных систем зажигания
- 3.7.2. Особенности рабочего процесса транзисторной системы зажигания
- 3.7.3. Принципы построения узлов бесконтактных систем зажигания для автомобильных двс
- Магнитоэлектрические датчики.
- Направление
- 3.7.4. Электронное распределение высокого напряжения по цилиндрам двигателя
- 3.7.5. Особенности конструкций аппаратов электронных систем зажигания для автомобильных двигателей
- 3.7.6. Преимущества электронных систем зажигания
- 3.8. Искровые свечи зажигания
- 3.8.1. Общие сведения
- 3.8.2. Условия работы свечи на двигателе
- 3.8.3. Устройство свечей зажигания
- 3.8.4. Тепловая характеристика и маркировка свечей
- 3.9. Диагностирование систем зажигания
- Глава 4. Системы освещения и сигнализации
- 4.1. Общие сведения
- 4.2. Основные принципы формирования светораспределения систем освещения и сигнализации
- 4.3. Классификация систем освещения
- 4.4. Нормирование светотехнических характеристик головных фар
- 4.5. Конструкция современных головных фар
- 4.6. Противотуманные фары
- 4.7. Классификация светосигнальных приборов. Нормирование основных характеристик
- 47.1. Общие сведения
- 4.7.2. Габаритные огни
- 4.7.3. Сигналы торможения
- 4.7.4. Указатели поворота и их боковые повторители
- 4.8. Конструкция светосигнальных приборов
- 4.9. Источники света
- 4.10. Техническое обслуживание и диагностирование систем освещения и сигнализации в эксплуатации
- Вопросы для самоконтроля
- Глава 5. Информационно-диагностическая система
- 5.1. Общие сведения
- 5.2. Контрольно-измерительные приборы
- 5.2.1. Приборы измерения давления и разрежения
- 5.2.2. Приборы измерения температуры
- 5.2.3. Приборы измерения уровня топлива
- 5.2.4. Приборы контроля зарядного режима
- 5.2.5. Приборы контроля режима движения и частоты вращения коленчатого вала двигателя
- 5.3. Бортовая система контроля
- 5.4. Система встроенных датчиков
- 5.5. Маршрутные компьютеры
- 5.6. Автомобильные навигационные системы
- 5.7. Панели приборов
- Вопросы для самоконтроля
- Глава 6. Электронные системы автоматического управления агрегатами автомобиля
- 6.1. Общие сведения
- 6.2. Электронное управление двигателем
- 6.2.1. Электронные системы управления топливоподачей бензиновых двигателей
- 6.2.2. Экономайзер принудительного холостого хода с электронным управлением
- 6.2.3. Электронные системы управления, топливоподачей дизелей
- 6.2.4. Основные компоненты эсау двигателем Электробензонасосы
- Электроуправляемые форсунки
- Исполнительные механизмы управления частотой вращения коленчатого вала на холостом ходу
- Датчики для определения нагрузки двигателя
- Датчики частоты вращения и положения коленчатого и распределительного валов
- Датчик кислорода
- Датчики температуры
- Датчик детонации
- Главное реле и реле бензонасоса
- 6.3. Электронное управление подвеской
- 6.4. Электронные антиблокировочные системы
- Принцип действия системы и типы абс
- Способы диагностирования
- 6.5. Гидромеханическая передача с электронным управлением
- 6.6. Электронное управление положением фар
- 6.7. Автоматическое управление стеклоочистителем
- 6.8. Автоматическая блокировка дверей
- Вопросы для самоконтроля
- Глава 7. Вспомогательное электрооборудование
- 7.1. Электропривод вспомогательного электрооборудования автомобиля
- 7.2. Стеклоочистители, омыватели и фароочистители
- 7.3. Звуковые сигналы
- 7.4. Электронные противоугонные системы
- Вопросы для самоконтроля
- Глава 8. Схемы электрооборудования автомобилей. Коммутационная аппаратура
- 8.1. Общие сведения
- 8.2. Коммутационная аппаратура
- 8.3. Провода и способы защиты от аварийных режимов
- 8.4. Потери напряжения в электрических сетях автомобиля
- 8.5. Принципы построения схем электрооборудования автомобилей
- Вопросы для самоконтроля
- Список литературы