11.5. Расчет амортизаторов
Наибольшее распространение на современных автомобилях получили гидравлические телескопические амортизаторы двухстороннего действия.
Расчет амортизатора заключается в определении площадей проходных сечений калиброванных отверстий и параметров клапанов, обеспечивающих характеристику, полученную при расчете плавности хода автомобиля, при выбранных по стандартам основных размерах (диаметры поршня, штока и т.д.). В проверочный расчет входит расчет теплового режима работы амортизатора.
Эффективное гашение колебаний кузова и колес автомобиля зависит от силы сопротивления, создаваемой гидравлическим амортизатором при работе:
, (11.25)
где – коэффициент сопротивления амортизатора; – скорость перемещения поршня амортизатора; n – показатель степени.
Характеристикой амортизатора называется графическая зависимость силы его сопротивления от скорости перемещения поршня при ходах сжатия и отдачи.
В зависимости от показателя степени n характеристика амортизатора может быть линейной (n = 1), прогрессивной (n > 1) и регрессивной (n < 1). Тип характеристики зависит от размеров калиброванных отверстий, вязкости жидкости и конструкции клапанов.
Амортизаторы различаются также по соотношению коэффициентов сжатия и отдачи. Обычно. Такое соотношение обусловлено стремлением ограничить силу, передающуюся через амортизатор на несущую систему при наезде колеса на препятствие. Коэффициенты сопротивления амортизатора определяются по критическому коэффициенту затухания при колебании подрессоренной массы на упругих элементах.
Клапаны сжатия и отдачи разгружают амортизатор и подвеску автомобиля от больших усилий, возникающих при высокочастотных колебаниях и ударах по время движения по неровностям опорной поверхности, а также в случае возрастания вязкости амортизаторной жидкости при низких температурах воздуха. При резком сжатии открывается клапан сжатия (точка a), при резкой отдаче – клапан отдачи (точка b).
Основным конструктивным размером амортизатора является диаметр поршня , который выбирается таким образом, чтобы наибольшее давление жидкости, соответствующее максимальному усилию, передающемуся через амортизатор, не выходило за рекомендуемые пределы.
При ходе сжатия, когда поршень движется вниз и шток входит в рабочий цилиндр, жидкость из-под поршня вытесняется в двух направлениях: в пространство под поршнем и в резервуар. Объем жидкости, вытесненный поршнем, больше освобожденного пространства над поршнем на величину введенного объема штока. Объем жидкости, составляющий разницу, перетекает через калиброванные отверстия клапана сжатия в компенсационную камеру. Давление жидкости практически одинаково над поршнем и под ним при малых скоростях.
Разность площадей верхней и нижней поверхностей поршня равна площади штока . Поэтому сила сопротивления сжатия будет равна
. (11.26)
Жидкость, перетекающая при сжатии в компенсационную камеру, поднимает в ней общий уровень жидкости и повышает давление воздуха.
При ходе отдачи жидкость, вытесняемая из пространства над поршнем в пространство под ним, не может его заполнить целиком. Недостаток жидкости восполняется из компенсирующей камеры через впускной клапан, имеющий малое сопротивление.
При ходе отдачи давление жидкости в пространстве над поршнем действует на свободную площадь поршня, не занятую площадью штока. Усилие сопротивления при отдаче
. (11.27)
Диаметр штока выбирается в зависимости от диаметра поршня – .
С диаметрами штока и рабочего цилиндра тесно связаны размеры компенсационной камеры, которая должна вмещать определенный объем жидкости и воздуха для осуществления процесса рекуперации. При этом объем воздуха должен быть примерно в 3 раза больше объема штока при его полном ходе (чтобы не создавалось излишне высокое давление при работе и нагреве).
Конструктивная длина амортизатора – .
Окончательная характеристика амортизатора вследствие недостаточной точности гидравлических расчетов всегда отрабатывается экспериментально.
За основу расчета температуры рабочей жидкости берется уравнение теплового баланса:
, (11.28)
где – мощность, рассеиваемая амортизатором; – коэффициент теплоотдачи стенок в воздух; – площадь поверхности стенок амортизатора; и – температура стенок амортизатора и окружающей среды соответственно.
Мощность, рассеиваемую амортизатором, можно рассчитать по формуле:
, (11.29)
где – расчетная скорость поршня амортизатора.
Температуру стенок амортизатора определяют по формуле:
. (11.30)
Допустимая температура нагрева стенок – [] = 100° С.
Если температура нагрева выше указанной, необходимо выбрать больший типоразмер амортизатора из ряда, приведенного в стандарте.
- Основы конструирования автомобилей
- Введение
- 1. Основы проектирования автомобилей
- 1.1. Свойства автомобилей
- 1.2. Требования, предъявляемые к конструкции автомобилей
- 1.3. Стадии проектирования автомобилей
- 1.3.1. Техническое задание
- Раздел 2 «Технические требования» определяет показатели качества и эксплуатационные характеристики автомобиля с учетом действующих стандартов и норм, в общем случае включает десять подразделов.
- 1.3.2. Эскизный проект
- 1.3.3. Технический проект
- 1.3.4. Рабочая документация
- 1.3.5. Порядок постановки автомобилей на производство
- 2. Нагрузочные и расчетные режимы. Методы расчета
- 2.1. Рабочие процессы агрегатов и систем автомобилей
- 2.2. Эквивалентная динамическая система трансмиссии автомобиля
- 2.3. Методы расчета элементов трансмиссии
- 3. Сцепления
- 3.1. Назначение. Классификация. Требования
- 3.2. Определение основных параметров сцепления
- 3.3. Рабочий процесс сцепления
- 3.4. Расчет на износ. Тепловой расчет
- 3.5. Расчет элементов сцепления
- 3.5.1. Расчет нажимных пружин
- 3.5.2. Расчет нажимного диска
- 3.5.3. Расчет ведомого диска
- 3.5.4. Расчет рычагов выключения
- 3.6. Расчет привода сцепления
- 4. Коробка передач
- 4.1. Назначение. Классификация. Требования
- 4.2. Определение основных параметров механической ступенчатой коробки передач
- 4.3. Расчет зубьев шестерен на прочность и долговечность
- 4.4. Расчет валов
- 4.5. Расчет подшипников
- 4.6. Расчет синхронизатора
- 5. Карданная передача
- 5.1. Назначение. Классификация. Требования
- 5.2. Рабочий процесс карданных шарниров
- 5.2.1. Кинематика карданных шарниров
- 5.2.2. Динамика карданного шарнира неравных угловых скоростей
- 5.3. Расчет элементов карданной передачи
- 5.3.1 Расчет карданной передачи с шарнирами неравных угловых скоростей
- 5.3.2 Расчет карданной передачи с шарнирами равных угловых скоростей
- 6. Главная передача
- 6.1. Назначение. Классификация. Требования
- 6.2. Нагрузки в главных передачах
- 6.3. Расчет шестерен главной передачи на прочность и долговечность
- 6.4. Расчет валов и подшипников главной передачи
- 7. Дифференциал
- 7.1. Назначение. Классификация. Требования
- 7.2. Кинематический анализ дифференциала
- 7.3. Расчет основных элементов дифференциала
- 8. Полуоси
- 8.1. Назначение. Классификация. Требования
- 8.2. Нагрузки, воспринимаемые полуосями
- 8.3. Расчет полуосей
- 9. Несущие системы
- 9.1. Назначение. Классификация. Требования
- 9.2. Расчет рамы автомобиля
- 9.3. Расчет кузова
- 10. Мосты
- 10.1. Назначение. Классификация. Требования
- 10.2. Расчет мостов
- 10.2.1. Расчет ведущего моста
- 10.2.2. Расчет управляемого моста
- 10.2.3. Расчет комбинированного моста
- 11. Подвески
- 11.1. Назначение. Классификация. Требования
- 11.2. Колебания и плавность хода автомобилей
- 11.3. Расчет упругих элементов подвески
- 11.4. Расчет направляющих устройств подвески
- 11.5. Расчет амортизаторов
- 12. Колеса. Шины
- 12.1. Назначение. Классификация. Требования
- 12.2. Расчет подшипников ступиц
- 13. Рулевое управление
- 13.1. Назначение. Классификация. Требования
- 13.2. Определение параметров рулевого управления
- 13.3. Кинематический расчет рулевого привода
- 13.4. Расчет элементов рулевого управления
- 14. Тормозные системы
- 14.1. Назначение. Классификация. Требования
- 14.2. Анализ тормозных механизмов
- 14.3. Расчет тормозных механизмов
- 14.4. Расчет тормозных приводов
- Литература