logo search
НАДЕЖНОСТЬ_1_ГРАДИРНИ / НАДЕЖНОСТЬ_Корчагин_1_ГРАДИРНИ

1.1. История развития научно-технического направления «надёжность»

Теория надёжности появилась в начале ХХ в. как результат научно-технического прогресса. Объектами исследования являются закономерности возникновения отказов объектов, технологические приёмы восстановления их работоспособности. Рассматриваются происходящие в объектах процессы, разрабатываются методы расчёта надёжности технических объектов, методы прогнозирования отказов. Выбираются способы увеличения надёжности при проектировании и эксплуатации объектов, а также способы сохранения надёжности при эксплуатации. Определяются методы сбора, учёта и анализа статистических данных, характеризующих надёжность.

Математической основой теории надёжности являются теория вероятностей и математическая статистика, математическая логика, теория случайных процессов, теория массового обслуживания, теория информации, теория планирования эксперимента и другие математические дисциплины.

В истории развития теории надежности выделяют три периода. С первой четверти до начала 60-х годов ХХ в. (период становления науки) надежность оценивалась по числу зафиксированных отказов. По статистике отказов входящих в систему элементов определялись значения интенсивности отказов, затем выполнялись расчёты надёжности. Такой подход развивался в связи с решением проблемы надежности в радиоэлектронике и автоматике. В числе авторов работ, связанных с теорией надежности, Н. Ф. Хоциалов (механические системы), A. M. Берг, Н. Г. Бруевич (радиоэлектроника и автоматика), Б. В. Гнеденко, Ю. К. Беляев (математические вопросы теории надежности) и др., а также известные зарубежные авторы – Г. Майер, Дж. Нейман, К. Шеннон, А. Пирс.

В 60-е годы XX в. (второй период) стали учитывать влияние функциональных связей между элементами системы, влияние на отказы эксплуатационных факторов – температуры, среды, вибраций, электрической нагрузки и пр. В результате накоплен богатый статистический материал, обобщённый теоретически.

Во второй половине 70-х годов (третий период) усилия учёных направлены на решение задач прогнозирования надёжности объектов и оценки надёжности сложных систем. Характерной особенностью периода стала глубина проникновения в физико-химические и статистические закономерности появления отказов в простых и сложных системах.

В современной теории надёжности выделяют направления: совершенствование конструктивных и технологических методов надёжности; обеспечение эксплуатационной надёжности.

Нормативной основой для развития указанных направлений являются международные и государственные стандарты, стандартные методики и программы обеспечения надёжности.

Открытие в 1985 г. Робертом Керлом, Гарольдом Крото и Ричардом Смолли фуллеренов явилось началом эпохи нанотехнологий. Новое аллотропное состояние углерода с его каркасной структурой, состоящей из пяти- и шестиугольных ячеек, с числом атомов от 36 до 540, расширило границы знания. В 1991 г. С. Иидзима сообщил миру о существовании нанотрубок, в которых ячейки из образованных атомами углерода шестиугольников соединены в трубки диаметром до одного нанометра и длиной до нескольких десятков микрометров. Развитие области знаний о наномире неизбежно приведет к изменению понятия «надёжность». Это предположение основано на результатах оценки перспектив создания революционных технологий – программируемых матриц механосинтеза, которые делают возможным массовое производство с атомарной точностью любой материальной структуры [67].