8.2. Хранение сжиженных углеводородных газов под давлением в металлических резервуарах
Стальные резервуары бывают цилиндрические и сферические, а в зависимости от монтажа - наземные, подземные и с засыпкой (рис. 8.1). В первом случае внешняя среда обусловливает температурный режим хранимого сжиженного газа: изменение температуры воздуха вызывает соответствующие изменения температуры сжиженного газа. Разница в температурах сжиженного газа и атмосферы незначительная - порядка 1…2 К. Максимальная температура сжиженного газа в наземных резервуарах определяется максимальной температурой воздуха в летний период.
При заглублении резервуаров температура газа мало зависит от колебаний температуры воздуха и больше зависит от температуры окружающей среды. Давление сжиженного углеводородного газа в резервуарах изменяется в зависимости от температуры хранимого в них продукта. Максимальное давление в резервуаре обусловливается упругостью насыщенных паров при максимальной температуре внешней среды. Максимальную температуру в надземных резервуарах и транспортных емкостях для территории России принимают порядка 328 К. При этой температуре упругость насыщенных паров пропана 1,92 МПа, н-бутана 0,62 МПа и изобутана 0,8 МПа. Минимальная температура в надземных резервуарах для территории России может достигать 233 К. При этой температуре упругость паров пропана составляет 0,114 МПа, бутана - 0,04 МПа, т. е. в резервуаре для хранения бутана может наблюдаться вакуум. На глубине 1-1,5 м tmax = 293-298 К, что обусловливает давление упругих паров пропана 0,95 МПа, н-бутана - 0,265 МПа и изобутана - 0,35 МПа.
Рис. 8.1. Стальные резервуары:
а - цилиндрический наземный; б - цилиндрический подземный; в -цилиндрический с засыпкой; г - шаровой; 1 - резервуар; 2 - площадка для обслуживания; 3 - опоры.
В зимне-весенний период года tmin = 271 К, тогда давление упругих паров пропана - 0,45 МПа, н-бутана - 0,11 МПа и изобутана - 0,15 МПа. Таким образом, при хранении сжиженных углеводородных газов при переменной температуре давление в резервуаре колеблется в значительных пределах. Для хранения СУГ при повышенном давлении затрачивается много металла, а также требуется оснащать резервуары арматурой высокого давления при повышенных эксплуатационных расходах. Резервуары под высоким давлением имеют сравнительно небольшой объем и являются весьма пожаро-и взрывоопасными. Поэтому к устройству складов сжиженных газов, оборудованных этими резервуарами, предъявляются повышенные требования по технике безопасности. Недостаток этих резервуаров - их большая стоимость и металлоемкость (около 320 кг металла на 1 м3 объема для СУГ). Хранение продуктов значительно усложняется, если необходимо хранить газы (например, этилен), которые при нормальной температуре технологически трудно перевести из газообразного состояния в жидкое.
Сжиженные газы хранят в цилиндрических и шаровых резервуарах. Вместимость цилиндрического резервуара должна быть не более 200 м3 для СУГ и 250 т для аммиака, вместимость шарового резервуара для СУГ, входящих в состав газонаполнительных станций, - не более 600 м3 , для СУГ, хранящихся на сырьевых и товарных складах нефтехимических предприятий, - не более 2000 м3. Вместимость шарового резервуара для хранения аммиака не должна превышать 2000 т при рхр до 1 МПа, 950 т при рхр от 1 до 1,6 МПа и 500 т при рхр от 1,6 до 2 МПа включительно.
Металлические (стальные) резервуары для сжиженных газов изготавливают четырех типов:
—цилиндрические передвижные объемом 600, 1000 и 1600 л для наземной установки;
-—цилиндрические стационарные объемом 2,5, 5 и 10 м3 для подземной установки;
—цилиндрические стационарные объемом 25, 50, 100, 160 и 200 м3 для наземной и подземной установок;
—шаровые объемом 300, 600, 900, 2000 и 4000 м3 для наземной установки.
Резервуары для сжиженных газов изготавливают из стали ВСт.З, спокойной, предназначенной для хранения продуктов при температуре стенки емкости до 243 К и не выше 323 К и из стали 16ГС для хранения продуктов с температурой стенки не выше 323 К и не ниже 233 К. Основные характеристики цилиндрических резервуаров даны в табл. 6.1.
На газобензиновых, нефтеперерабатывающих, химических и других заводах, а также на крупных базах хранения и распределения сжиженных газов применяют шаровые резервуары, на изготовление которых расходуется меньше металла на единицу объема. Сферический резервуар объемом 600 м3 при толщине стенки 22 мм и диаметром 10,5 м, рассчитанный на рабочее давление 6 105 Па, весит 70 т. Основные характеристики сферических резервуаров даны в табл. 8.2. Наземные резервуары для защиты от действия солнечных лучей окрашивают в светлый цвет и оборудуют теневыми кожухами или располагают под навесами. Подземные резервуары покрывают противокоррозионной изоляцией и засыпают песком. Каждую емкость оборудуют люками. Люк-лаз имеет диаметр 0,45 м, а люк вентиляции - 0,2 м. От люка-лаза внутрь горизонтального резервуара устанавливают стремянку для спуска по ней рабочего во время осмотра емкости. Штуцер для спуска воды необходимо оборудовать незамерзающим клапаном.
Таблица 8.2
- 1. Основные сведения о газораспределительных сетях. Свойства газов.
- 1.2. Горючие газы, используемые для газоснабжения.
- 1.3. Основные физические свойства газа
- 2. Гидравлический расчет газораспределительных сетей.
- 2.1. Структура систем газоснабжения
- 2.2. Потребители газа. Режим потребления газа.
- 2.3. Расчетные расходы газа
- Годовые расходы газа.
- 2.3.2. Расчетные часовые расходы газа
- 2.4. Гидравлический расчет простых газопроводов.
- 2.4.1. Газопроводы высокого и среднего давления
- 2.4.2. Газопроводы низкого давления.
- 2.5. Гидравлический расчет газопроводов высокого и среднего давлений
- 2.5.2. Расчет газопроводов, проложенных параллельно
- 2.5.3. Расчет газопровода с лупингом
- 2.5.4. Расчет газопровода со вставкой
- 2.5.5. Среднее давление в газопроводе
- 2.5.6. Расчет газопровода высокого давления при равномерном отборе газа по длине.
- 2.5.7. Методика расчета разветвленных газопроводов высокого и среднего давлений
- 2.5.8. Порядок расчета
- 2.6. Гидравлический расчет газопроводов низкого давления.
- 2.6.1.Расчетные схемы газораспределительных сетей.
- 2.6.2. Гидравлический расчет распределительных газопроводов при сосредоточенных отборах газа.
- 2.6.3. Вывод расчетной формулы для случая равномерно распределенного отбора газа по длине горизонтального газопровода.
- 2.6.4. Определение границ применения различных методик расчета газопроводов.
- 2.6.5. Определение расчетных расходов для трубопроводов с распределенным отбором.
- 2.6.6 Расчетные перепады давления
- 2.6.7. Методика расчета распределительных газопроводов низкого давления с сосредоточенными отборами газа.
- 2.7. Гидравлический расчет вертикальных домовых газопроводов.
- 2.7.1. Вывод расчетных формул при равномерном по длине отборе газа
- 2.7.2. Вывод расчетных формул при сосредоточенном отборе газа
- 2.8. Методы расчета тупиковой газораспределительной сети
- 2.8.1.Традиционный (старый) метод расчета тупиковой сети
- 2.8.2. Некоторые неопределенности при расчете тупиковой сети по традиционному методу
- 2.9. Гидравлический расчет кольцевых газораспределительных сетей
- 2.9.1. Методика расчета кольцевых сетей
- 2.9.2. Методика гидравлической увязки кольцевой сети
- 3. Газораспределительные станции
- 3.1. Задача газораспределительных станций
- 3.2. Технологическая схема и компоновка грс
- 3.3. Регулирование давления газа.
- 3.4. Расчет пропускной способности регуляторов давления
- 3.5. Очистка и одоризация газа. Предохранительная арматура грс.
- 3.6. Температурный режим грс
- 4. Гидравлический режим газовых сетей
- 4.1. Режим работы газовых приборов
- 4.2. Гидравлический режим газовой сети низкого давления
- 4.3. Сезонное регулирование давления газа на выходе грп
- 5. Хранилища природного газа и газозаправочные станции
- 5.1. Методы компенсации сезонных, суточных и часовых колебании потребления газа
- 5.2. Аккумулирующая способность магистрального газопровода
- 5.3. Подземные хранилища газа
- 5.4. Газонаполнительные станции сжатого природного газа
- Глава 6 общие сведения о сжиженных углеводородных газах
- 6.1. Основные полнятия о суг
- 6.2. Источники получения суг
- 6.3. Состав сжиженных углеводородных газов
- Состав суг по гост 20488-75
- 6.4. Свойства суг. Смеси газов
- Некоторые физико-химические свойства углеводородов,
- Значения величин и для расчета плотности
- Значения для расчета изменения объема жидкой фазы сжиженных углеводородных газов
- 6.5. Диаграмма состояния индивидуальных углеводородов
- Глава 7
- 7.1. Перевозка суг в железнодорожных цистернах
- 7.2. Перевозка сжиженных газов в автомобильных
- 7.3. Перевозка сжиженного газа автотранспортом в баллонах и "скользящих" резервуарах
- 7.4. Перевозка сжиженных углеводородных газов по морю
- 7.5. Перевозка сжиженных углеводородных газов речным
- 7.6. Транспортировка сжиженных углеводородных газов
- Глава 8 хранение сжиженных углеводородных газов
- 8.1. Определение объемов хранилищ сжиженных углеводородных газов
- 8.2. Хранение сжиженных углеводородных газов под давлением в металлических резервуарах
- Характеристика сферических резервуаров
- 8.3. Шахтные хранилища сжиженных углеводородных
- 8.4. Подземные хранилища сжиженных углеводородных газов в отложениях каменной соли
- 8.5. Изотермическое хранение сжиженных углеводородных газов в стальных и железобетонных резервуарах
- 8.6. Подземные ледопородные хранилища сжиженных
- Глава 9
- 9.1. Устройство кустовой базы (газонаполнительной станции) сжиженного углеводородного газа
- 9.1.1. Назначение и организационная структура кустовой базы (газонаполнительной станции)
- 9.1.2. Принцип работы кустовой базы (газонаполнительной станции)
- 9.2. Анализ методов перемещения сжиженных углеводородных газов
- 9.3. Заправка автомобилей сжиженными углеводородными газами
- Техническая характеристика агзс
- Глава 10
- 10.1. Регазификация сжиженных углеводородных газов
- 10.2. Конструктивные особенности испарителей сжиженных углеводородных газов
- 10.3. Резервуарные и баллонные установки с естественным и искусственным испарением
- 10.4. Использование газовоздушных смесей для
- 11. Основная и дополнительная литература
- 11.1. Основная литература.
- 11.2. Дополнительная литература.