Контактно–транзисторная система зажигания
Развитие современного двигателестроения происходит в направлении повышения экономичности и снижения удельного веса при одновременном увеличении частоты вращения коленчатого вала двигателя и степени сжатия. Степень сжатия составляет 7,0...8,5, но на перспективных автомобилях устанавливаются двигатели со степенью сжатия 9,0...10 и более. Такое повышение степени сжатия требует значительного увеличения вторичного напряжения, необходимого для пробоя искрового промежутка свечи.
Частота вращения коленчатого вала автомобильных двигателей также неуклонно возрастает и в настоящее время достигает 5000...8000 об/мин, диапазон рабочих температур двигателя лежит в пределах 40...+100 °С. Стремление повысить топливную экономичность двигателя заставляет использовать обедненную смесь ( > 1), для надежного воспламенения которой требуется большая длина искрового промежутка свечи зажигания, т.е. требуется большая энергия разряда. Искровой промежуток свечи зажигания лежит в пределах 0,8... 1,2 мм.
Таким образом, к современной системе зажигания предъявляются более высокие требования:
увеличение вторичного напряжения, развиваемого катушкой зажигания, при одновременном повышении надежности;
энергия искрового разряда должна быть достаточной для воспламенения топливо–воздушной смеси на всех режимах работы двигателя (15...50 мДж и более);
устойчивое искрообразование в различных эксплуатационных условиях (загрязнение свечей, колебания температуры, колебания напряжения бортовой сети и т.д.);
устойчивая работа при значительных механических нагрузках;
простота обслуживания системы;
минимальное потребление энергии источников питания;
минимальные масса, габариты и низкая стоимость.
Кроме того, необходимо учитывать, какие показатели автомобильного двигателя являются наиболее важными: мощность, топливная экономичность, малая токсичность отработавших газов и т.д.
Такие требования не могут быть удовлетворены при использовании классической системы зажигания, так как в этом случае практически единственным реальным способом увеличения вторичного напряжения является увеличение силы тока разрыва. Однако увеличение силы тока разрыва свыше определенного значения (3,5...4,0 А при 12 В) приводит к ненадежной работе контактов прерывателя и резкому сокращению их срока службы.
Перечисленные требования к системе зажигания вызвали необходимость создания новых устройств, позволяющих улучшить условия воспламенения топливо–воздушной смеси в цилиндрах двигателя.
Одним из путей повышения развиваемого системой зажигания вторичного напряжения является применение полупроводниковых приборов, работающих в качестве управляемых ключей, служащих для прерывания тока в первичной обмотке катушки зажигания. Наиболее широкое использование в качестве полупроводниковых реле нашли мощные транзисторы, способные коммутировать токи амплитудой 10 А и выше в индуктивной нагрузке без какого–либо искрения и механического повреждения, характерных для контактов прерывателя. Функцию электронного реле могут выполнять также и силовые тиристоры, но широкой промышленной реализации в системах зажигания с накоплением энергии в индуктивности они не нашли.
Принципиальная схема контактно–транзисторной системы зажигания (КТСЗ) (рис. 4.13) в основном состоит из тех же элементов, которые характерны для обычной контактной (классической) системы зажигания, и отличаются от нее наличием транзистора (транзисторного коммутатора) и отсутствием конденсатора, ранее шунтировавшего контакты прерывателя.
Рис. 4.13. Принципиальная схема контактно–транзисторной системы зажигания:
- 1. Система электроснабжения
- Аккумуляторные батареи
- Устройство и принцип действия
- Необслуживаемые аккумуляторы для легковых автомобилей
- Характеристики аккумуляторов
- Генератор
- Принцип работы генератора
- Конструкция автомобильных генераторов
- Токоскоростная характеристика генератора
- Принцип действия регулятора напряжения
- Стартер
- Характеристики
- Тяговое реле стартера
- Встроенный редуктор
- Система зажигания
- Требования к зажиганию
- Основные элементы системы зажигания
- Момент зажигания (угол опережения зажигания)
- Классическая система зажигания
- Рабочий процесс батарейной системы зажигания
- Недостатки классической системы зажигания
- Контактно–транзисторная система зажигания
- 8 Транзистор; остальные обозначения соответствуют принципиальной схеме классической системы зажигания (рис. 4.10, стр.31).
- Достоинства и недостатки ктсз.
- Тиристорная (конденсаторная) система зажигания
- Бесконтактные системы зажигания
- Датчики углового положения коленчатого вала двигателя
- 1 Магнитная цепь (статор); 2 магнит; 3 обмотка,
- 4 Распределитель потока (коммутатор)
- Цифровые системы зажигания
- 2 Датчик частоты вращения коленчатого вала двигателя; 3 датчик нагрузки;
- 4 Датчик температуры; 5 интерфейс; 6 вычислитель:
- 7 Двухканальный коммутатор; 8,9 двухвыводные катушки зажигания
- Аппараты регулирования угла опережения зажигания
- Центробежный регулятор опережения зажигания
- Вакуумный автомат опережения зажигания
- Октан корректор
- Свечи зажигания
- Датчики системы управления двигателем
- Датчик массового расхода воздуха (дмрв)
- Датчик кислорода (дк)
- Датчик температуры охлаждающей жидкости (дтож)
- Датчик положения дроссельной заслонки (дпдз).
- Датчик детонации
- Датчик фаз (дф)
- Датчик скорости (дс)
- Потенциометр со
- Датчик неровной дороги
- Контроллер
- Процессорная часть контроллера.
- Формирователи входных сигналов.
- Формирователи выходных сигналов
- Бортовая диагностика
- Система управления ходовой частью
- Антиблокировочная система тормозов
- Противобуксовочная система
- Противозаносная система
- Система распределения тормозного усилия
- Система освещения и сигнализации
- Моторедукторы для стеклоочистителей.
- Система безопасной парковки автомобиля
- Электропроводка, коммутационные и защитные устройства
- Электропроводка
- Коммутационное оборудование