1. Наземное применение газотурбинных двигателей (гтд)
П Рис.1.1. Сравнение габаритных размеров ГТД и дизельного двигателя мощностью 3 МВт.
Быстрому внедрению ГТД в различные отрасли промышленности и транспорта способствовали неоспоримые преимущества этого класса тепловых двигателей перед другими энергетическими установками (паротурбинными, дизельными и др.):
- большая мощность в одном агрегате;
- компактность, малая масса (рис. 1.1);
- уравновешенность движущихся элементов;
- широкий диапазон применяемых топлив;
- легкий и быстрый запуск, в том числе при низких температурах;
- хорошие тяговые характеристики;
- высокая приемистость и хорошая управляемость.
Н Рис. 1.2. Применение ГТД для прямого привода нагнетателя природного газа
Основная особенность перечисленного приводимого оборудования – зависимость потребляемой мощности N от частоты вращения n, температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменной частотой вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной (рис. 1.5), ГТД выполненные по такой схеме получили название – турбовальные двигатели (ТВаД).
ГТД для привода электрогенераторов используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих «чистую» электроэнергию, а также в составе когенерационных установок (в российской литературе они часто называются «ГТУ-ТЭЦ»), производящих совместно электрическую и тепловую энергию (рис. 1.3).
Рис. 1.3. Принципиальная схема газотурбинной электростанции
С Рис. 1.4. Электростанция «Урал-2500»
Электростанции комбинированного парогазового цикла (см. рис.1.3) используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов «пуск-останов» для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на газотурбинных двигателях большой мощности (N>150 МВт), достигают КПД выработки электроэнергии эл = 58…60 % и являются к настоящему времени самыми совершенными энергосистемами большой мощности.
В когенерационных установках тепло выхлопных газов ГТД используется в котле- утилизаторе для производства горячей воды и (или) пара для технологических нужд или для использования в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90%.
Электростанции комбинированного парогазового цикла и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт.
Основная особенность ГТД для привода электрогенераторов – постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального) и высокие требования к точности поддержания частоты вращения, от которой зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике.
- Оглавление
- Раздел 1 (мод.1). Основы термодинамической работы турбовальных двигателей (тВаД) и процессы, происходящие в отдельных узлах………4
- Раздел 2 (мод. 2). Совместная работа узлов и характеристики тВаД..26
- Раздел 3 (мод. 3). Расчет тВаД…………………………………………….38
- Раздел 1 (мод.1). Основы термодинамической работы турбовальных двигателей (тВаД) и процессы, происходящие в отдельных узлах
- 1. Наземное применение газотурбинных двигателей;
- 2. Принцип действия турбовальных двигателей (тВаД).
- 1. Наземное применение газотурбинных двигателей (гтд)
- 2. Принцип действия турбовальных двигателей (тВаД)
- Контрольные вопрсы:
- 1. Идеальные термодинамические циклы (тВаД);
- 2. Термический кпд идеального цикла.
- 1. Идеальные термодинамические циклы (тВаД)
- 2. Термический кпд идеального цикла тВаД
- Контрольные вопросы:
- 2. Работа действительного цикла
- Внутренняя (индикаторная) работа
- Эффективная работа цикла тВаД
- 3. Эффективный кпд тВаД
- Зависимость
- Контрольные вопросы:
- 1. Преимущества и недостатки тВаД различных схем;
- 2. Особенности конструкции тВаД со свободной турбиной;
- 3. Основные параметры тВаД.
- 1. Преимущества и недостатки тВаД различных схем
- Преимущества и недостатки одновальных тВаД.
- 2. Особенности конструкции тВаД со свободной турбиной
- 3. Основные параметры тВаД
- Контрольные вопросы:
- Раздел 2 (мод. 2). Совместная работа узлов и характеристики тВаД
- 1. Зависимость удельных параметров тВаД от параметров рабочего процесса: ; ;
- 2. Влияние отбора мощности на запас устойчивой работы и основные параметры тВаД.
- 1. Зависимость удельных параметров тВаД от параметров рабочего процесса ;
- 2. Влияние отбора мощности на запас устойчивой работы и основные параметры тВаД
- Отбор мощности в одновальном тВаД
- Отбор мощности в тВаД со свободной турбиной
- Контрольные вопросы:
- 2. Дроссельные характеристики тВаД со свободной турбиной;
- 1. Дроссельные характеристики одновального тВаД
- 2. Дроссельные характеристики тВаД со свободной турбиной
- 3. Климатические характеристики тВаД
- Методы построения эксплуатационных характеристик
- Контрольные вопросы:
- Раздел 3 (мод. 3). Расчет тВаД
- 2. Предварительный расчет тВаД.
- 1. Основные этапы расчета тВаД
- 2. Предварительный расчет тВаД
- Контрольные вопросы:
- 2. Определение основных данных тВаД.
- 1. Определение параметров рабочего тела в характерных сечениях тВаД
- 2. Определение основных параметров тВаД
- Контрольные вопросы:
- 2. Определение частоты вращения роторов тВаД.
- 1. Оценка геометрических параметров характерных сечений тВаД
- 2. Определение частоты вращения роторов
- Контрольные вопросы:
- Библиографический список