1.2. Цикл двигателей с подводом теплоты при постоянном давлении
По этому циклу работают стационарные и судовые компрессорные двигатели с воспламенением от сжатия или компрессорные дизели.
В дизели в процессе впуска поступает воздух, давление и температура которого повышаются в процессе сжатия. Вследствие применения в дизелях высоких степеней сжатия (от 14 до 20) давление конца сжатия приближается к 3–4 МПа и соответствующая температура значительно превышает температуру самовоспламенения топлива. Топливо впрыскивается в конце сжатия через форсунку, мелко распыляется и, приходя в соприкосновение с сильно нагретым воздухом, начинает гореть.
В этих двигателях для обеспечения хорошего распыливания топлива используют сжатый воздух с давлением около 6 МПа, получаемый в специальных компрессорах, включенных в конструктивную схему двигателя. Насос подает топливо в форсунку, в которую из компрессора подводится сжатый воздух, и в нужный момент внутренняя полость форсунки сообщается с цилиндром, куда поступает смесь распыляющего воздуха и топлива.
Ввиду постепенной подачи топлива через форсунку нельзя получить резкого повышения давления при сгорании, как в цикле с сообщением теплоты при V = const, где все топливо перед сгоранием находится в цилиндре. В двигателях, работающих по циклу с подводом теплоты при P = const, топливо горит постепенно по мере его поступления в цилиндр, в результате чего процесс сгорания происходит при перемещающемся поршне, при почти постоянном давлении.
Диаграмма теоретического цикла с подводом тепла при постоянном давлении показана на рис. 1.2.
При движении поршня от НМТ (точка a диаграммы теоретического цикла) газ, заполняющий цилиндр, начинает сжиматься. В этом случае процесс сжатия (линия ас индикаторной диаграммы) будет адиабатическим. Давление и температура в конце этого процесса определяется так же, как и при термодинамическом цикле с подводом теплоты при постоянном давлении.
В конце сжатия, с приходом поршня в ВМТ, происходит, как в ранее рассмотренном теоретическом цикле, мгновенное сообщение теплоты Q1 рабочему телу; результатом этого будет повышение его температуры при постоянном давлении (изобара сz).
рис.1.2.
При положении поршня, когда объем надпоршневого пространства равен VZ (точка z диаграммы), сообщение теплоты прекращается.
Степень предварительного расширения газа в цилиндре в конце процесса подвода теплоты:
.
Тогда температура газа в цилиндре в конце процесса подвода теплоты (точка z)
.
Затем газ адиабатически расширяется (линия zb диаграммы).
Давление газа в цилиндре в конце процесса расширения
.
Температура газа в цилиндре в конце процесса расширения
.
Для повторения цикла необходимо охладить газ, заключенный в цилиндре, т. е. отнять теплоту Q2 от введенной теплоты Q1 при постоянном объеме Va.
Термический КПД выражается формулой:
.
В цикле с сообщением теплоты при постоянном объеме вводимое количество Q1 теплоты пропорционально его изобарной теплоемкости СP, а отводимое Q2 пропорционально его изохорной теплоемкости Сν и соответствующим разностям температур:
Термический КПД можно определять подставив значения температур с учетом того, что:
Двигатели этого типа в качестве транспортных не использовались вследствие громоздкости установки, снабженной компрессором, имевшим две или три ступени давления. Поэтому данный цикл в дальнейшем рассматриваться не будет.
- Автодорожный факультет
- Содержание
- Глава 1. Теоретические термодинамические циклы двс
- Введение
- Глава 1. Теоретические термодинамические циклы двс
- 1.1. Цикл двигателей с подводом теплоты при постоянном объеме.
- 1.2. Цикл двигателей с подводом теплоты при постоянном давлении
- 1.3. Цикл двигателей с подводом тепла при постоянном объеме и постоянном давлении (смешанный цикл)
- 2.1 Исходные данные.
- 2.2. Расчет процесса впуска.
- 2.3. Расчёт процесса сжатия.
- 2.4. Расчет процесса сгорания.
- 2.5. Расчёт процесса расширения
- 2.6. Основные параметры двигателя
- 2.7. Оределение мощности двигателя и построение его внешней скоростной характеристики.
- 2.8. Вывод
- Заключение