7. Системы удержания плавучих буровых средств (пбс).
Системы предназначены для удержания в заданных пределах отклонения бурового плавучего средства (БС и ППБУ) от оси бурящейся и эксплуатирующей скважины в горизонтальном направлении.
Обычно горизонтальное перемещение бурового плавучего средства не превышает 5-6 % глубины моря.
Радиус максимального отклонения R=0.06H,
Где 0,06 – максимальное относительное отклонение, ограничиваемое напряжениями в трубах водоотделяющей колонны и углом отклонения нижнего шарнирного и шарового или другой конструкции соединения; Н- глубина моря, м.
В зависимости от глубины моря Н все ПБС оснащают одной из следующих возможных систем удержания на точке бурения:
При глубинах моря до 200м – с помощью якорных цепей или тросов, либо комбинированной системы (якорных цепей и тросов);
На глубинах моря более 200м – с помощью динамической системы стабилизации (динамического позицирования).
Якорные системы удержания
Буровое плавсредство и систему заякоривания рассматривают как единый комплекс, за исключением случаев экстремальных погодных условий.
Система заякоривания включает якорные цепи, лебедку, стопорное устройство, роульс (устройство для изменения направления перемещения якорного троса). В зависимости от местных условий, характеристики бурового плавсредства и других факторов применяют различные схемы расположения якорных цепей или канатов относительно ПБС.
На рис. 15 показаны шесть наиболее распространенных в мировой практике вариантов заякоривания при воздействии нагрузок с любой стороны; n- число якорных канатов.
Якорные цепи или тросы выбирают в зависимости от ожидаемой нагрузки на них, глубины моря, характеристики рабочего оборудования, стоимости, наличия пространства для палубных устройств и других факторов.
Рис. 15- Типовых вариантов систем заякоривания: а,б,в – симметричные системы соответственно с n-9,8,10; г,д,е – системы с якорными канатами (n =8), расположенными соответственно под углом 45-900 друг к другу, порд углом 30-700 к оси платформы и под углом 30-600 к продольной оси судна
Для заякоривания применяют два типа плоскозвенных цепей с распоркой: цепь со сваренным встык звеньями и замковую цепь. В большинстве случаев для заякоривания применяют металлические канаты диаметром 57-76 мм (иногда 90мм). Преимущества металлических канатов: масса каната в морской воде ниже стоимости цепи. Недостаток металлического каната заключается в том, что вследствие малой массы требуется большое развертывание троса до необходимой величины тангенциальной кривой провисания, а также в случае выхода каната из строя его следует заменять по всей длине.
Якорные системы оснащают комплексом оборудования для регулирования натяжения якорных канатов, который включает тензометры и записывающую аппаратуру, непрерывно управляющую натяжением якорного каната и извещающую оператора об изменении высоты волны или направления ветра.
Системой управляют с пульта на основе информации, получаемой от датчиков, устанавливаемых на тросах.
Система динамической стабилизации.
На глубинах морей более 200 м якорные системы стабилизации не обеспечивают требуемые допускаемые отклонения ПБС о вертикальной оси бурящейся скважины, становятся массивными, и их применение неэффективно. По этим причинам на глубинах более 200 м используют динамические системы стабилизации (динамического позицирования), которые по сравнению с якорными системами удержания имеют следующие преимущества:
Обеспечивают требуемую технологией бурения точность позицирования ПБС;
Осуществляют быстрое изменение курса БС или ППБУ в целях уменьшения бортовой и вертикальной качек;
Обеспечивают быстрый уход с точки бурения и возврат на нее ПБС.
Система динамической стабилизации представляет собой замкнутую цепь автоматического управления. Она включает:
Цепь обратной связи с датчикам, определяющими координаты продольного и поперечного перемещения по осям х, у и угол поворота φ ПБС относительно принятых неподвижных координат;
блок сравнения, который определяет отклонения Δх, Δу и Δφ действующего положения ПБС от его начального расчетного положения х0, у0, φ0 ;
пульты управления, имеющие прямые и обратные связи с двигателями и гребными винтами, рассчитывающие и подающее командного пункта на двигатели и гребные винты команды для возвращения ПБС в начальное положение.;
подруливающие устройства (двигателей и гребных винтов), обеспечивающие перемещение судна на величину Δх, Δу и Δφ и возвращение егов начальное положение.
На автоматизированном пункте управления универсальная ЭВМ по цепи обратной связи получает данные от внешних датчиков о положении ПБС в определенный момент. При этом угол поворота определяют гидрокомпасом, а координаты х, у вычисляются системой акустического измерения АМS. Эти данные имеют высокую точность, их используют в системе динамической стабилизации.
В системе динамической стабилизации имеются две ЭВМ: одна работает, а вторая в резерве. Система автоматической стабилизации включается в работу и контролируется оператором с главного пульта управления.
.
Бурение скважин на море труднее и дороже, чем на суше. Обусловлено это наличием над придонным устьем скважины водного пространства, необходимостью применять специальные морские основания для размещения на них бурового оборудования и выполнения с них комплекса работ, связанных с проводкой скважины, сложными гидрологическими и метеорологическими условиями работы на акваториях (ветры и волнения, приливы, отливы и течения, туманы, морось, снег и горизонтальная видимость, ледовый режим, температура воздуха и воды) и т.д.
Ветры, волнения и течения водного пространства, находящегося над придонным устьем скважины, вызывают качку плавучей буровой установки, перемещение оборудования и инструментов по ее палубе, дрейф и снос установки в направлении ветра или течения. Качка оказывает неблагоприятное физиологическое воздействие на людей, работающих на буровой установке. Волнение моря вредно и при бурении со стационарных (неподвижных) установок, так как волны, обрушивающиеся на основание буровой, могут повредить его или полностью разрушить.
Рыхлые породы морского дна обычно сильно обводнены. При бурении в таких породах для обеспечения сохранности керна и устойчивости стенок скважин приходится использовать специальные технические средства и осуществлять технологические мероприятия, требующие дополнительных материальных затрат и удовлетворяющие жестким требованиям охраны окружающей среды от загрязнения.
Специфические гидрологические и метеорологические условия моря, ограничивают возможности и снижают эффективность применения способов, технических средств и технологий бурения, используемых на суше. Поэтому проблема повышения эффективности бурения скважин на море до сих пор является одной из самых важных в процессе вовлечения в производство минеральных ресурсов подводных месторождений.
Для бурения и последующей эксплуатации таких скважин экономически оправданным является создание дорогостоящих массивных стационарных, полустационарных и погружных конструкций оснований, которые позволяют размещать на них традиционную буровую технику и использовать хорошо отработанные на суше технологии бурения, добычи, сбора и подготовки нефти и газа к транспортированию.
Бурение разведочных скважин на море требует принципиально новых конструкций бурового оборудования и технологий, которые гарантировали бы проходку скважин с соблюдением требований безопасности, экологичности и обеспечивали бы высокое качество работ при наименьших затратах. Для создания таких технологий и техники необходимо обобщить и оценить имеющийся опыт применения современных технических средств и технологий бурения на море, научно обосновать рациональные пути их дальнейшего развития.
Условия бурения на море
На процесс бурения скважин на море влияют естественные, технические и технологические факторы (рис.16). Наибольшее влияние оказывают естественные факторы, определяющие организацию работ, конструктивное исполнение техники, ее стоимость, геологическую информативность бурения и т.п. К ним относятся гидрометеорологические, геоморфологические и горно-геологические условия.
Гидрометеорологические условия характеризуются волнением моря, его ледовым и температурным режимами, колебаниями уровня воды (приливы —отливы, сгоны — нагоны) и скоростью ее течения, видимостью (туманы, низкая облачность, метели, осадки).
Для большинства морей, омывающих берега России (Японское, Охотское, Берингово, Белое, Баренцево, Татарский пролив), характерна следующая средняя повторяемость высоты волн, %: до 1,25 м (3 балла) - 57; 1,25 — 2,0 м (4 балла) - 16; 2,0—3,0 м (5 баллов) - 12,7; 3,0—5,0 (6 баллов) -10. Средняя повторяемость высоты волн до 3,0 м в Балтийском, Каспийском и Черном морях составляет 93 %, 3,0 — 5,0 м - 5 %.
Для бурения на акваториях опасны отрицательные температуры воздуха, вызывающие обледенение бурового основания и оборудования и требующие больших затрат времени и труда на приведение в готовность силового оборудования после отстоя.
Ограничивает время бурения на море также снижение видимости, которое в безледовый период чаще отмечается в ночные и утренние часы.
Геоморфологические условия определяются очертаниями и строением берегов, топографией и почвой дна, удаленностью точек заложения скважин от суши и обустроенных портов и т.п. Для шельфов почти всех морей характерны малые уклоны дна. Изобаты с отметкой 5 м находятся на расстоянии 300—1500 м от берега, а с отметкой 200 м — 20 —60 км. Однако имеются желоба, долины, впадины, банки.
Почва дна даже на незначительных площадях неоднородна. Песок, глина, ил чередуются со скоплениями ракушки, гравия, гальки, валунов, а иногда и с выходами скальных пород в виде рифов и отдельных камней.
На первой стадии освоения морских месторождений твердых полезных ископаемых основным объектом геологического изучения являются участки в прибрежных районах с глубинами акваторий до 50 м. Это объясняется меньшей стоимостью разведки и разработки месторождений на меньших глубинах и достаточно большой площадью шельфа с глубинами до 50 м.
|
|
- 1.Введение. Современное состояние освоения морских месторождений.
- 2. Особенности разработки морских нефтяных и газовых месторождений.
- Образование водяных и газовых конусов.
- 3. Поисково-разведочные работы на шельфе (геофизика). Элементы гидрогеологического режима.
- Элементы гидрогеологического режима.
- 4. Морские буровые установки. Самоподъемные буровые установки (спбу). Типы опорных колонн.
- 5. Морские буровые установки. Полупогружные плавучие буровые установки. (ппбу).
- 6. Морские буровые установки. Буровые суда.
- 7. Системы удержания плавучих буровых средств (пбс).
- Требования к бурению разведочных скважин на море
- 9. Методы разработки морских месторождений. Системы расположения скважин. Режимы работы пластов.
- Газовая залежь
- Нефтяная залежь
- 10 . Строительство морских трубопроводов.
- Список использованной литературы :