2.13.2. Обтікання тупих кутів, криволінійної поверхні та профілю крила
Обтікання зовнішнього тупого кута. Уздовж стінки АО (рис. 2.47, а) надзвуковий потік рухається з постійною швидкістю V1 > а. Вершина тупого кута, точка О, є джерелом збурень і створює в цьому потоці лінію збурень ОС. На цій лінії потік починає плавно змінювати швидкість.
Рис. 2.47. Надзвукове обтікання.
Уздовж стінки ОВ потік рухається з деякою, теж постійною, швидкістю V2 > V1 оскільки площа поперечного перетину надзвукового потоку збільшилася. Вершина тупого кута, точка О, служить джерелом збурень також і в потоці зі швидкістю V2, створюючи в ньому лінію збурень OD, на якій завершується зміна швидкості потоку.
Кути нахилу ліній збурень α1 = arcsin (1/M1); α2 = arcsin (1/M2). Оскільки М2 > М1, отже α1 > α2. При обтіканні надзвуковим потоком зовнішнього тупого кута виникають дві лінії збурень, між якими потік розширюється і безперервно (плавно) змінює напрям і збільшує швидкість.
Обтікання внутрішнього тупого кута. Стінка ОВ (рис. 2.47, б) є перешкодою для руху потоку, тому відбувається його гальмування, при якому плавне зменшення швидкості неможливе. У вершині внутрішнього тупого кута виникає стрибок ущільнень, на поверхні якого відбувається різка зміна напряму потоку і його швидкості.
Це можна довести таким чином. Вершина внутрішнього тупого кута, точка О, будучи джерелом збурень, повинна створювати лінію збурень ОС у потоці зі швидкістю V1 і лінію збурень OD у потоці зі швидкістю V2. Кути нахилу ліній збурень будуть описуватися тими ж формулами, що і при обтіканні зовнішнього тупого кута, тільки в цьому випадку M1 > M2. Отже, α2 > α1.
Виконавши побудову, побачимо, що лінія збурень ОС потрапила в потік зі швидкістю V2, а лінія збурень OD — у потік зі швидкістю V1, що фізично неможливе. Отже, безперервна (плавна) зміна швидкості надзвукового потоку при обтіканні внутрішнього тупого кута виключена. Швидкість потоку змінюється різко (стрибкоподібно) на деякій поверхні, розташованої між лініями збурень. Цю поверхню прийнято називати стрибком ущільнення, оскільки стрибкоподібне зменшення швидкості супроводжується стрибкоподібним збільшенням температури, тиску і густини.
Обтікання увігнутої криволінійної поверхні. При обтіканні надзвуковим потоком увігнутої криволінійної поверхні окремі її точки створюють дуже слабкі збурення 1, лінії яких перетинаються на деякій відстані від поверхні (рис. 2.47, в). У точках перетинання виникає досить сильне збурення потоку у формі криволінійного стрибка 2. Проходячи через криволінійний стрибок ущільнення, потік різко (стрибкоподібно) змінює свої параметри: зменшує швидкість, збільшує тиск, густину, температуру.
Обтікання профілю крила. Обтікання надзвукового профілю крила надзвуковим потоком складається з обтікання зовнішніх і внутрішніх тупих кутів (рис. 2.47, г).
Перед профілем крила повітряний потік переміщається зі швидкістю V0. Струйка повітря, що обтікає профіль крила зверху, у передньої кромки повертається на зовнішній тупий кут і збільшує швидкість, а у задньої — на внутрішній тупий кут і зменшує швидкість.
Струйка, що обтікає профіль знизу, у передньої кромки гальмується через поворот на внутрішній тупий кут, а у задньої кромки збільшує свою швидкість, оскільки повертає на зовнішній тупий кут. Над профілем швидкість V1 > V0, під профілем швидкість V2 < V0, в результаті чого, відповідно до закону Бернуллі, виникає різниця тисків, і профіль створює піднімальну силу.
- (Л7) 2.11. Основні законі руху повітря, що стискається
- 2.11.1. Загальні відомості про аеродинаміку великих швидкостей
- 2.11.2. Число Маха
- 2.11.3. Законі руху потоку, що стискається
- 2.12. Надзвукова течія повітря
- 2.13. Особливості обтікання тіл надзвуковим потоком
- 2.13.1. Розповсюдження малих збурень у потоці повітря
- 2.13.2. Обтікання тупих кутів, криволінійної поверхні та профілю крила
- 2.13.3. Фізична суть стрибків ущільнення
- 2.13.4. Хвильовий опір
- 2.13.5. Форма стрибка ущільнення
- (Л8) 2.14. Хвильова криза
- 2.14.1. Поняття про критичне число Маха
- 2.14.2. Фізична суть і наслідки хвильової кризи
- 2.15. Вплив стисливості потоку на аеродинамічні коефіцієнти
- 2.15.1. Залежність аеродинамічних коефіцієнтів від числа м
- 2.15.2. Подолання хвильової кризи
- 2.16. Аеродинамічні форми швидкісного літака
- 2.17. Проблеми надзвукового польоту
- 2.17.1. Безпека та економічність польоту
- 2.17.2. Звуковий удар і тепловий бар'єр
- 2.17.3. Аеродинамічна компонування надзвукових літаків
- 2.17.4. Особливості гіперзвукового польоту