2.15.1. Залежність аеродинамічних коефіцієнтів від числа м
Прояв стисливості потоку викликає зміну обтікання тіла потоком повітря і розподілу тисків за профілем крила, внаслідок чого змінюються аеродинамічні коефіцієнти.
Залежності аеродинамічних коефіцієнтів су і сх прямого крила (у плані) достатньо великого подовження при постійному куті атаки від числа М (критерію стисливості потоку) приведені на рис. 2.58.
Рис. 2.58. Залежність аеродинамічних коефіцієнтів від числа М.
На графіках можна виділити характерні ділянки, що відповідають особливостям обтікання крила. Для кривої залежності су = f (М) можна виділити наступні області:
0 - 1 (М = 0 ÷ 0,4). Коефіцієнт су = соnst, оскільки стисливість потоку при V < 0,4а не виявляється.
1 - 2 (М = 0,4 ÷ Мкр) Коефіцієнт су збільшується, оскільки через прояву стисливості збільшується зона розрідження над крилом.
2 - 3 (М = Мкр ÷ 0,8). При М = Мкр відбувається різке збільшення коефіцієнта су через утворення місцевої надзвукової зони і знижується тиск над крилом. Збільшення коефіцієнта су триває до появи місцевої надзвукової зони під крилом.
3 - 4 (M = 0,8 ÷ 0,9). Зменшення коефіцієнта су пов'язане зі збільшенням зони розрідження під крилом, оскільки нижній стрибок швидко зміщається до задньої кромки профілю.
4 - 5 (М = 0,9 ÷ 1,0). Коефіцієнт су збільшується через збільшення зони розрідження над крилом, оскільки верхній стрибок зміщається до задньої кромки. При М = 1 нижній і верхній стрибки досягають задньої кромки, а перед крилом утворюється головний прямий від’єднанний стрибок ущільнення.
5 - 6 (М = 1 ÷ 1,2). В міру збільшення надзвукової швидкості головний стрибок ущільнення наближається до передньої кромки крила, набуваючи форму косого стрибка. На задній кромці крила продовжують знаходитися нижній і верхній хвостові стрибки. Коефіцієнт су трохи зменшується, оскільки розширення потоку після головного стрибка під крилом протікає інтенсивніше, ніж над крилом.
На кривої залежності сх = φ (М) можна виділити наступні області:
0 - 1 відповідає числам М = 0 ÷ 0,4, при яких стисливість потоку не виявляється і коефіцієнт сх залишається постійним.
1 - 2 (М = 0,4 ÷ Мкр). Повільне збільшення коефіцієнта сх відбувається через збільшення зони підвищеного тиску перед крилом.
2 – 5 (М = Мкр = 1). Різке збільшення коефіцієнта лобового опору сх відбувається через появу хвильового опору; коефіцієнт сх = схmax створюється при числі М = 1, при появі головного прямого від’єднанного стрибка.
5 – 6 (М = 1 ÷ 1,2). Коефіцієнт сх зменшується через зменшення хвильового опору: прямій від’єднанний стрибок наближається до профілю і при числі М = 1,2 стає косим приєднаним стрибком.
Діапазони швидкостей польоту. У зоні дозвукових швидкостей I (М = 0 ÷ Мкр) прояв стисливості починається при М > 0,4 і виражається в збільшенні зон розрідження, що і приводить до плавного збільшення коефіцієнтів су і сх. Ніяких розривів у потоці немає.
Вплив стисливості на коефіцієнт су визначається по теорії С.А. Христиановича: .
Зона змішаних (трансзвукових) швидкостей ІІ (М = 0,4 ÷ 1,2) починається з появи місцевих стрибків ущільнення. Політ на трансзвукової швидкості характеризується змішаним режимом обтікання. До стрибка швидкість потоку надзвукова, а за стрибком — дозвукова.
Зона надзвукових швидкостей ІІІ починається з числа М > 1,2, коли головний стрибок приєднується до профілю, перетворюючись у косий стрибок ущільнення. Втрати енергії в стрибку зменшуються, швидкості за ним залишаються надзвуковими.
Зона гіперзвукових швидкостей відповідає числам М > 5. При гіперзвуковому обтіканні головний стрибок ущільнення має дуже великий нахил і майже притиснутий до обтічної поверхні. Це викликає його взаємодію з межовим шаром. У результаті відбувається значне зростання температури поблизу поверхні тіла і змінюються фізичні та хімічні властивості повітря.
- (Л7) 2.11. Основні законі руху повітря, що стискається
- 2.11.1. Загальні відомості про аеродинаміку великих швидкостей
- 2.11.2. Число Маха
- 2.11.3. Законі руху потоку, що стискається
- 2.12. Надзвукова течія повітря
- 2.13. Особливості обтікання тіл надзвуковим потоком
- 2.13.1. Розповсюдження малих збурень у потоці повітря
- 2.13.2. Обтікання тупих кутів, криволінійної поверхні та профілю крила
- 2.13.3. Фізична суть стрибків ущільнення
- 2.13.4. Хвильовий опір
- 2.13.5. Форма стрибка ущільнення
- (Л8) 2.14. Хвильова криза
- 2.14.1. Поняття про критичне число Маха
- 2.14.2. Фізична суть і наслідки хвильової кризи
- 2.15. Вплив стисливості потоку на аеродинамічні коефіцієнти
- 2.15.1. Залежність аеродинамічних коефіцієнтів від числа м
- 2.15.2. Подолання хвильової кризи
- 2.16. Аеродинамічні форми швидкісного літака
- 2.17. Проблеми надзвукового польоту
- 2.17.1. Безпека та економічність польоту
- 2.17.2. Звуковий удар і тепловий бар'єр
- 2.17.3. Аеродинамічна компонування надзвукових літаків
- 2.17.4. Особливості гіперзвукового польоту