Автомобильные эксплуатационные материалы. Классификация и применение пластичных смазок

курсовая работа

1.Химмотологическая карта

1 лист

2. Схема смазки автомобиля

1 лист

ВВЕДЕНИЕ

Правильный выбор и рациональное использование эксплуатационных материалов во многом определяют надежность и долговечность техники, затраты на ее обслуживание и ремонт. Ошибка при выборе моторного масла может привести в лучшем случае к сокращению срока службы двигателя, в худшем -- к его поломке.

Выбор и правильное применение масла осложняются зачастую тем, что технической документацией на некоторые машины предусматривается большое число марок смазочных материалов. Поэтому унификация их и использование заменителей могут иметь большое значение для упрощения эксплуатации автомобильной техники.

В автомобиле имеется большое число узлов и механизмов, где применяются пластичные смазки, разнообразие которых также предполагает грамотное их использование.

Для смазки ряда механизмов и деталей автомобиля используют густые мазеобразные продукты - пластичные смазки. Согласно одному из терминологических определений, отражающему объемно-механические свойства, пластичной смазкой называют систему, которая при малых нагрузках проявляет свойства твердого тела; при некоторой критической нагрузке смазка начинает пластично деформироваться (течь подобно жидкости) и после снятия нагрузки вновь приобретает свойства твердого тела.

Смазки по своему составу являются сложными веществами. В простейшем случае они состоят из двух компонентов - масляной основы (дисперсионная среда) и твердого загустителя (дисперсная фаза). Сочетая в себе свойства твердого тела и жидкости, пластичные смазки в качестве грубой модели могут быть представлены, как кусок ваты, пропитанной маслом. Волокна ваты соответствуют частицам дисперсной фазы, а масло, удерживаемое в вате, - дисперсионной среде смазки.

Свойства твердого тела придает смазке наличие структурного каркаса. Когда нагрузки малы, например под действием собственного веса, структурный каркас и сама смазка не разрушаются, а упруго деформируются. Это обусловлено природой загустителя - размером, формой, характером сцепления частиц дисперсной фазы.

Структурный каркас смазки не отличается сколько-нибудь значительной прочностью. Даже приложение малых нагрузок разрушает его, и смазка деформируется подобно пластично-вязкой жидкости. Благодаря этому смазку можно использовать в узле трения, свободно наносить на защищаемые от коррозии поверхности.

Процесс разрушения структурного каркаса пластичных смазок обратим. После снятия нагрузки течение смазки прекращается, структурный каркас практически мгновенно восстанавливается, и смазка вновь приобретает свойства твердого тела.

В качестве масляной основы смазок используют различные масла нефтяного и синтетического происхождения. Загустителями, образующими твердые частицы дисперсной фазы, могут быть вещества органического и неорганического происхождений (мыла жирных кислот, парафин, такие термостойкие материалы, как силикагель, бентонит, сажа, органические пигменты и т.п.).

Пластичные смазки предназначены для применения в узлах трения, где масло не удерживается или невозможно обеспечить непрерывное пополнение его запаса.

1.ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА ПЛАСТИЧНЫХ СМАЗОК

1.1 Температура каплепадения

В пластичной смазке при нагревании происходит необратимый процесс разрушения кристаллического каркаса, и смазка становится текучей. Переход из пластичного состояния в жидкое условно выражают температурой каплепадения, т.е. температурой, при которой из стандартного прибора при нагревании падает первая капля смазки. Температура каплепадения смазок зависит от вида загустителя и его концентрации.

По температуре каплепадения смазки делят на тугоплавкие (Т), среднеплавкие (С) и низкоплавкие (Н). Тугоплавкие смазки имеют температуру каплепадения выше 100 °С; низкоплавкие -до 65 єС. Во избежание вытекания смазки из узла трения температура каплепадения должна превышать температуру рабочего узла на 15-20 єС.

1.2 Механические свойства

Механические свойства смазок характеризуются пределом прочности смазок при сдвиге и пенетрацией.

Предел прочности -- это минимальное удельное напряжение, которое нужно приложить к смазке, чтобы изменить ее форму и сдвинуть один слой смазки относительно другого. При меньших нагрузках пластичные смазки сохраняют свою внутреннюю структуру и упруго деформируются подобно твердым телам, а при больших давлениях структура разрушается, и смазка ведет себя как вязкая жидкость.

Предел прочности зависит от температуры смазки -- с повышением температуры он уменьшается. Этот показатель характеризует способность смазки удерживаться в узлах трения, противостоять сбросу под влиянием инерционных сил. Для рабочих температур предел прочности не должен быть ниже 300--500 Па.

Пенетрация - условный показатель механических свойств смазок, численно равный глубине погружения в них конуса стандартного прибора за 5 с. Пенетрация - показатель условный, не имеющий физического смысла, и не определяет поведение смазок в эксплуатации. В то же время, так как этот показатель быстро определяется, им пользуются в производственных условиях для оценки идентичности рецептуры и соблюдения технологии изготовления смазок.

Число пенетрации характеризует густоту смазок и колеблется от 170 до 420.

1.3 Эффективная вязкость

Вязкость смазки при одной и той же температуре может иметь различное значение, которое зависит от скорости перемещения слоев относительно друг друга. С увеличением скорости перемещения вязкость уменьшается, так как частицы загустителя ориентируются по ходу движения и оказывают меньшее сопротивление скольжению. Увеличение концентрации и степени дисперсности загустителя приводят к увеличению вязкости смазки. Вязкость смазки зависит от вязкости дисперсной среды и технологии приготовления смазки.

Вязкость смазки при определенной температуре и скорости перемещения называется эффективной вязкостью и рассчитывается по формуле

,

где -- напряжение сдвига; D -- градиент скорости сдвига.

Показатель вязкости имеет большое практическое значение, Он определяет возможность подачи смазок и заправки в узлы трения с помощью различных заправочных устройств. Вязкость смазки определяет также расход энергии на ее перекачку при перемещении смазанных деталей.

1.4 Коллоидная стабильность

Коллоидная стабильность -- это способность смазки сопротивляться расслаиванию.

Коллоидная стабильность зависит от структурного каркаса смазки, который характеризуется размерами, формой и прочностью связей структурных элементов. Следовательно, на коллоидную стабильность оказывает влияние вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать.

Выделение масла из смазки увеличивается с повышением температуры, увеличением давления под действием центробежных сил. Сильное выделение масла не допустимо, так как смазка может ухудшить или потерять полностью свои смазочные свойства. Для оценки коллоидной стабильности используют различные приборы, способные выпрессовывать масло под действием нагрузки.

1.5 Водостойкость

Водостойкость -- это способность смазки противостоять размыву водой. Растворимость смазки в воде зависит от природы загустителя. Наилучшей водостойкостью обладают парафиновые, кальциевые и литиевые смазки. Натриевые и калиевые - водорастворимые смазки.

2.КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ ПЛАСТИЧНЫХ СМАЗОК

Пластичные смазки подразделяются на четыре группы:

- антифрикционные - для снижения износа и трения скольжения сопрягаемых деталей;

- консервационные - для предотвращения коррозии при хранении, транспортировке и эксплуатации;

- канатные - для предотвращения коррозии и износа стальных канатов;

- уплотнительные - для герметизации зазоров, облегчения сборки и разборки арматуры, манжет, резьбовых, разъемных и любых подвижных соединений.

Антифрикционные смазки являются самой многочисленной группой пластических смазок и делятся на следующие подгруппы:

С - общего назначения;

О - для повышенной температуры;

М - многоцелевые;

Ж - термостойкие (узлы трения с рабочей температурой >150 °С);

Н - низкостойкие (узлы трения с рабочей температурой <40 °С);

И - противозадирные и противоизносные;

X - химически стойкие;

П - приборные;

Т - редукторные (трансмиссионные);

Д - приработочные пасты;

У - узкоспециализированные (отраслевые).

Консервационные смазки обозначаются буквой “3”, канатные -- “К”.

Уплотнительные смазки имеют три подгруппы:

А - арматурные (для манжет);

Р - резьбовые;

В - вакуумные (для уплотнений в вакуумных системах).

В зависимости от применения смазки делят па общего назначения, многоцелевые и специализированные.

2.1 Смазки общего назначения

Кальциевые смазки имеют общее название -- солидолы. Это самые массовые и дешевые антифрикционные смазки, относятся к сред не плавким. Кальциевые смазки выпускаются следующих марок: солидол Ж, прессолидол Ж, солидол С или прессолидол С.

Солидол С работоспособен при температуре от -20 до 65 °С. Прессолидол С - от -30 до 50 °С.

Натриевые и натриево-кальциевые смазки работают в более широком интервале температур (от -30 до 110 °С) и применяются главным образом в подшипниках качения.

Например, смазка автомобильная ЯНЗ-2 почти нерастворима в воде, но при длительном применении во влажной среде эмульгируется. Вытесняется универсальной смазкой Литол-24.

2.2 Универсальные смазки

Универсальные смазки водостойки и работоспособны в широком интервале температур, скоростей и нагрузок. Обладают хорошими консервационными свойствами. Загустителями для них служат литиевые мыла.

Литол-24 - можно использовать в качестве единой автомобильной смазки, она работоспособна при температуре от -40 до 130 °С.

Фиол-1, Фиол-2, Фиол-3 - смазки аналогичны Литол-24, но более мягкие, лучше удерживаются в узлах трения.

2.3 Специализированные смазки

К специализированным смазкам относятся около 20 марок смазок разного качества. Они наиболее эффективно используются в качестве несменяемых и непополняемых смазок в процессе эксплуатации.

Графитная - применяется преимущественно в открытых узлах.

AM карданная - для карданных шарниров равных угловых скоростей (Тракта, Рцеппа, Вейса) грузовых автомобилей, склонна к вытеканию из узлов.

Шрус-4 - для шарниров равных угловых скоростей (типа Бирфильд) легковых автомобилей; работоспособна при температуре от -40 до 130 °С, водостойка, имеет высокие противозадирные и противоизносные свойства.

ШРБ-4 - для герметизированных шарниров подвесок и рулевого управления, диапазон рабочих температур от -40 до 130 °С.

ЛСЦ-15 - применяется в шлицевых соединениях, шарнирах и осях приводов педалей, стеклоподъемниках; обладает высокой водостойкостью, адгезией (прилипаемостью) к металлам, хорошими консервационными свойствами.

2.4 Термостойкие смазки

Предел работоспособности термостойких смазок -- от 150 до 250 °С.

Униол-ЗМ - водостоек, обладает хорошей коллоидной стабильностью и противозадирными свойствами.

ЦИАТИМ-221 - можно применять при температурах от -60 до 150 °С, химически стабильна к резине и полимерным материалам.

2.5 Морозостойкие смазки

Морозостойкие смазки работоспособны во всех узлах трения в условиях Крайнего Севера и Арктики.

Зимол - морозостойкий аналог смазки Литол-24.

Лита - многоцелевая морозостойкая рабоче-консервационная смазка, водостойкая.

ЦИАТИМ-201 - основная морозостойкая смазка для автомобилей, обладает посредственными противозадирными свойствами, при хранении выделяет масло. Зимол и Лита, уступая ей по морозостойкости, превосходят по противоизносным свойствам, работоспособности при повышенных температурах.

Делись добром ;)