logo search
Содержание

6. Стенды проверки тормозной системы

Наибольшее распространение получила комплексная диагностика тормозов, когда измеряют общие параметры процесса торможения: тормозной путь, суммарную тормозную силу и ее распределение между колесами автомобиля. Определение тормозных качеств автомобилей производится на роликовых и платформенных стендах. В процессе испытания на стендах определяют следующие параметры: тормозную силу на колесах левой и правой сторон, синхронность торможения колес одной оси и эффективность торможения. Силы торможения, действующие на каждое колесо, складывают и определяют полную силу торможения. Допускается различие в силах торможения, действующих на колеса одной оси, не более 15 % значения большей силы. Испытания проводятся на ненагруженном автомобиле.

Полноценная диагностика тормозов реально возможна только при стендовых испытаниях. Для стендовых испытаний установлены следующие параметры: общая удельная тормозная сила; время срабатывания тормозной системы; коэффициент неравномерности тормозных сил колес оси. Дополнительные параметры для автопоезда: коэффициент совместимости звеньев автопоезда; асинхронность времени срабатывания тормозного привода.

Еще одним диагностическим параметром является усилие на рабочем органе привода тормозной системы.

На сегодняшний день существует несколько методов испытания и видов стендов: испытания на силовых роликовых тормозных стендах; испытания на инерционных роликовых тормозных стендах; испытания на платформенных тормозных стендах.

Существующие средства технической диагностики тормозов (СТДТ) можно классифицировать по пяти признакам: по использованию сил сцепления колеса с опорной поверхностью; по месту установки; по способу нагружения; по режиму движения колеса; по конструкции опорного устройства.

Все СТДТ подразделяют на две большие группы:

1) стенды, работающие с использованием сил сцепления колеса с опорной поверхностью. В таких стендах реализуемый тормозной момент ограничен силой сцепления колеса с опорной поверхностью стенда, поэтому в большинстве из них невозможно реализовать полный тормозной момент автомобиля;

2) стенды, работающие без использования сил сцепления колеса с опорной поверхностью, передают тормозной момент непосредственно через колесо или через ступицу. Эта группа стендов не нашла широкого применения из-за сложности конструкции и нетехнологичности проведения испытаний.

По степени подвижности или месту установки СТДТ подразделяются на стационарно устанавливаемые (стенды); переносные, подключенные к автомобилю на момент диагностирования; настроечные, используемые как дополнительное оборудование автомобиля.

По способу нагружения различают силовые и инерционные стенды. Силовые стенды первой группы по режиму движения колеса на стенде могут быть с частичным проворачиванием колеса и с полным проворачиванием колеса. Первый режим, как правило, характерен для платформенных стендов, а второй — для всех остальных.

По конструкции опорных устройств стенды подразделяются на площадочные, роликовые и ленточные; с вывешиванием осей колес и без вывешивания осей.

Силовые платформенные стенды обладают целым рядом существенных недостатков, исключающих их широкое применение. Например, при испытании не учитывается влияние скорости движения на коэффициент трения скольжения и динамические воздействия в тормозной системе. Результаты измерений во многом зависят от положения колес на площадке стенда, от со стояния опорной поверхности и протекторов колес. Измеряется лишь усилие сдвига с места заторможенных колес.

Платформенные инерционные стенды, имеющие подвижные (одну общую на каждую сторону или под каждое колесо) площадки, по сравнению с силовыми платформенными стендами более совершенны, так как полнее учитывают динамику действия тормозных сил в реальных условиях. Для замеров используется инерция автомобиля, поэтому собственный привод не нужен. Однако эти стенды обладают рядом существенных недостатков: потребность в месте для разгона автомобиля, снижение уровня безопасности работ при диагностировании, низкая точность и достоверность диагностической информации.

Платформенный инерционный стенд предназначен для общего экспресс-диагностирования тормозных систем автомобиля. Он состоит из четырех подвижных платформ с рифленой поверхностью, на которые автомобиль наезжает колесами со скоростью 6... 12 км/ч, останавливаясь с резким торможением. Под влиянием возникающих при этом сил инерции автомобиля и сил трения между шинами и поверхностью площадок происходит перемещение платформы, пропорциональное тормозной силе, воспринимаемое жидкостным, механическим или электронным датчиком и фиксируемое измерительными приборами, расположенными на пульте.

Большинство стендов для диагностирования тормозов имеет роликовое опорное устройство. Из них наиболее широко используют стенды, основанные на силовом методе диагностирования, который позволяет определять тормозные силы каждого колеса при задаваемом усилии нажатия на педаль, время срабатывания тормозного привода, оценивать состояние рабочих поверхностей тормозных накладок и барабана, эллипсность барабанов и т. п. Большинство этих стендов при принудительном прокручивании заторможенных колес автомобиля имитирует скорость движения 2...5 км/ч (редко до 10 км/ч), однако, как показали исследования при малых скоростях (менее 5 км/ч для гидропривода и 2 км/ч для пневмопривода), создаваемые на стендах тормозные силы больше реальных, действующих в дорожных условиях. С увеличением скорости достоверность диагностирования этого параметра возрастает, но следует учитывать, что применение быстроходного привода роликов требует пропорционального увеличения мощности электродвигателей и значительного повышения стоимости стенда.

Испытания на платформенных стендах проверки тормозов получили широкое распространение в основном за счет своей дешевизны. Однако при испытаниях на инерционных стендах в процессе торможения колесо совершает как минимум более одного оборота, поэтому оценивается вся поверхность торможения тормозного механизма. Кроме того, в платформенных стендах, ввиду малых начальных скоростей торможения (по условиям безопасности) и интенсивного, быстрого торможения (из-за ограниченности тормозного пути, который определяется длиной тормозных площадок), торможение осуществляется на части поверхности торможения тормозного механизма, что неприемлемо с точки зрения оценки безопасности автомобиля. И слишком интенсивное торможение (по вышеприведенным причинам) искажает реальную физическую картину торможения автомобиля. ГОСТ 25478—91 требует проведения каждого измерения по тормозам не менее двух раз, т. е. должна обеспечиваться повторяемость проведения испытаний в аналогичных условиях. При испытании же на платформенных стендах начальная скорость задается водителем и может изменяться в широких пределах. При испытаниях на платформенных стендах проверки тормозов начальная скорость автомобиля не соответствует требованиям Правил дорожного движения и ГОСТ 25478—91, а значит, значение кинетической энергии меньше требуемого для правильной оценки тормозной системы, и максимального усилия на педали тормоза для гашения этой энергии не требуется. Таким образом, при испытаниях на платформенных стендах получаются завышенные значения по удельной тормозной силе и заниженные — по усилиям на органах привода тормозных систем.

Роликовые тормозные стенды. Роликовые тормозные стенды позволяют получать более точные результаты. При каждом повторении испытания они способны обеспечить условия (прежде всего скорость вращения колес) абсолютно одинаковые с предыдущими, что обеспечивается точным заданием начальной скорости торможения внешним приводом. К тому же при испытании на силовых роликовых тормозных стендах предусмотрено измерение так называемой «овальности» — неравномерности тормозных сил за один оборот колеса, при этом исследуется вся поверхность торможения. Кроме того, при испытании на роликовых тормозных стендах, когда усилие передается извне, от тормозного стенда, физическая картина торможения не нарушается. Тормозная система должна поглотить поступающую извне энергию, даже несмотря на то, что автомобиль не обладает кинетической энергией. Аналогичные рассуждения можно привести для оценки усилия нажатия на приводные органы тормозных систем. Есть еще одно важное условие — безопасность испытаний. С этой точки зрения самые безопасные испытания — на силовых роликовых тормозных стендах, поскольку кинетическая энергия испытуемого автомобиля на стенде равна нулю. В случае отказа тормозной системы при дорожных испытаниях или на платформенных тормозных стендах вероятность аварийной ситуации очень высока. Кроме того, ГОСТ 25478—91 ограничивает усилие на педали привода рабочего тормоза и органа управления стояночным тормозом. Эта величина, с точки зрения теории торможения, определяет усилия в исполнительных механизмах тормозной системы, необходимые для гашения кинетической энергии замедляющегося автомобиля. Подводя итог, можно сказать, что платформенные тормозные стенды пригодны для входной экспресс-диагностики на СТОА, но не для углубленной.

В состав любого роликового стенда входят две основные части: опорно-приводное устройство (ОПУ) и измерительное устройство (ИУ). Роликовые стенды хороши для автомобилей с приводом на одну ось. Для полноприводных автомобилей такая проверка может дать существенную погрешность, что обусловлено особенностями их трансмиссий. Полноприводные машины бывают с постоянным и отключаемым приводом на вторую ось. Во втором случае необходимо отключить полный привод. Наибольшую сложность представляют машины с постоянным полным приводом. Наличие постоянной связи между всеми четырьмя колесами приводит к тому, что тормозной момент с одного колеса передается на другое в соответствии со степенью блокировки межосевого и межколесного дифференциалов. Например, межосевой дифференциал типа Torsen, установленный на AudiQuattro, имеет коэффициент блокировки около 30 %. Соответственно, колеса одной оси будут на 30 % затормаживать колеса другой оси даже при ненажатой педали тормоза, а межколесный дифференциал поделит этот момент поровну между правым и левым колесами. При этом относительная величина разницы тормозных сил на колесах уменьшится, и результат измерений не будет отражать реального положения вещей.

Для избежания этой ошибки при работе с полноприводными автомобилями применяется система, в которой барабаны вращаются в разные стороны. При этом вал трансмиссии остается неподвижным, а вращение колес происходит за счет действия дифференциала. Замер при этом следует производить дважды, поскольку действие тормозов при вращении колес вперед и назад может различаться. Поэтому вначале замеряется тормозной момент на одном колесе, а затем на втором. Для достижения большей точности измерения применяют специальный датчик силы воздействия на педаль тормоза.

Кроме дифференциалов повышенного трения, в полноприводных автомобилях нашли широкое применение вязкостные муфты. Они также осуществляют передачу момента с одной оси на другую, но степень их блокировки зависит от разности скоростей вращения валов. Вследствие этого измерение тормозных сил на таких автомобилях следует производить на малых скоростях, когда действие тормозного момента от муфты невелико.

Недостаток роликовых стендов — пятно контакта шины с роликом относительно небольшого диаметра и существенно отличается от пятна контакта при движении по ровному асфальту. Соответственно, и результаты измерения ниже реально достижимых. Поэтому на стендах применяются по два ролика на каждое колесо.

Инерционные тормозные стенды. Инерционные тормозные стенды (рис. 3.6) создают условия торможения автомобиля, максимально приближенные к реальным. Стенд состоит из двух подвижных платформ / с рифленой поверхностью. На платформы со скоростью 6... 12 км/ч наезжает автомобиль, останавливаясь при резком торможении. Под влиянием силы инерции Р и сил трения между шинами и поверхностями платформ происходит перемещение платформ, пропорциональное тормозной силе. Это перемещение воспринимается датчиками 3 и фиксируется измерительными приборами.

В силу дороговизны собственно стенда, недостаточной безопасности, трудоемкости и слишком большого времени, требующегося на диагностику, стенд рентабелен только в условиях крупных СТОА.