Конструирование и расчет фрикционного сцепления автомобиля

курсовая работа

2. Анализ существующих конструкций сцепления

В современном автомотостроении применяются фрикционные, гидравлические и электромагнитные типы сцепления.

Фрикционные сцепления бывают: полуцентробежные, с созданием нажимного усилия пружинами, с автоматической регулировкой нажимного усилия, с созданием нажимного усилия электромагнитными силами (Рис. 1)

Фрикционные сцепления получили основное распространение.

Данный тип сцеплений неприхотлив в эксплуатации, конструктивно прост, имеет малые трудовые затраты в изготовлении и эксплуатации. Конструкция данного типа сцепления обеспечивает выполнение всех требований, предъявляемых к автомобильным транспортным средствам. Передача крутящего момента осуществляется за счет сил трения нажимным, фрикционным и опорным дисками. Обеспечение величины силы трения осуществляется нажимными пружинами. Сцепление оборудовано узлами гашения крутящих колебаний. Выключение и плавное включение сцепления осуществляется системой рычагов и упорным подшипником.

Рис 1. Фрикционное сцепление с созданием нажимного усилия электромагнитными силами: 1 - кожух; 2 - нажимной диск; 3 - якорь электромагнита; 4 - диск; 5 - контактные кольца; 6 - муфта блокировки сцепления; 7 - щетки; 8 - электромагнит; 9 - пружины.

Гидравлическое сцепление (Рис. 2) в основе нашло применение в транспортной технике, работающей в трудных дорожных условиях, где требуется мягкая передача крутящего момента от двигателя к трансмиссии. Конструктивно данное сцепление сложное, критично к эксплуатационному обслуживанию, требуется постоянный контроль за состоянием деталей сцепления и рабочей гидрожидкости. Конструкция сцепления представляет собой гидронасос и турбину. Передача крутящего момента и плавность работы происходит за счет движения рабочей жидкости между насосом и турбиной. Выключение сцепления производится за счет удаления рабочей жидкости из сцепления.

Рис 2. Гидромуфта: 1 - насосное колесо; 2 - турбинное колесо; 3 - клапаны опорожнения; 4 - клапаны заполнения; 5 - радиатор; 6 - предохранительный клапан; 7 - бак; 8 - насос питания.

Электромагнитное сцепление (Рис. 3) предназначено для применения в автоматических системах трансмиссии. Конструктивно данный тип сцеплений представляет собой электромагнит с ферромагнитным рабочим веществом. Включение сцепления производится подачей в катушки электромагнита рабочего напряжения. Основной недостаток данного типа сцепления заключается в том, что катушка сцепления во все время работы находится под напряжением, что сокращает срок эксплуатации, жесткое включение сцепления. Данный тип сцепления применяется в ограниченных видах транспортной техники.

Рис 3. Электромагнитное порошковое сцепление

1 - маховик; 2,3,6,7 - магнитопровод; 4 - обмотка возбуждения; 5 - вывод; 8 - диски из немагнитного материала.

Делись добром ;)