Выбор основных параметров, расчёт и конструирование тепловозов

курсовая работа

2. ОБОСНОВАНИЕ ВЫБРАННОГО ТИПА ДИЗЕЛЯ И ХАРАКТЕРИСТИКА ЕГО ОСНОВНЫХ ПАРАМЕТРОВ

Для проектного тепловоза кВт, поэтому выбираем дизель 1А-5Д49 с величиной эффективной мощности 2264 кВт. Основные технические характеристики указанного типа дизеля (Табл. 2.1.)

Таблица 2.1. Техническая характеристика дизеля

Тип дизеля

Д49

Марка дизеля

1А-5Д49

Обозначение по ГОСТ

16ЧН26/26

Номинальная мощность, кВт

2264

Расположение цилиндров

16V

Диаметр цилиндра, мм

260

Ход поршня, мм

260

Частота вращения коленчатого вала, об/мин

номинальная

1000

минимальная

350

Среднее эффективное давление, МПа

1,22

Средняя скорость поршня, м/с

8,67

Удельный расход топлива, кг/кВт·ч

0,203

Тепловыделение, кВт

в масло дизеля

423

в охлаждающую воду

780

от наддувочного воздуха

410

Подача насосов, м3

масляного

0,0222

водяного

0,0222

Габариты дизеля, м

длина

4,85

ширина

1,92

высота

2,9

Масса дизеля, кг

18000

3. ОПРЕДЕЛЕНИЕ НЕОБХОДИМЫХ ПАРАМЕТРОВ, КОЛИЧЕСТВА И РАЗМЕРОВ ОХЛАЖДАЮЩИХ УСТРОЙСТВ

Обоснование выбора типа охлаждающего устройства

Компромиссным решением, используемым на большинстве типов тепловозов, является открытая двухконтурная система охлаждения (Рис. 3.1.). В двухконтурной системе контур охлаждения элементов дизеля и контур охлаждения наддувочного воздуха и масла разделены. В качестве основного теплоносителя используется вода, циркулирующая в замкнутых системах охлаждения (контурах) с поверхностными теплообменниками. Каждый контур системы оборудован индивидуальным насосом. Это дает возможность раздельного регулирования температуры охлаждающей воды в обоих контурах. На проектируемом тепловозе целесообразно применить данную схему водяного охлаждения.

Рис. 3.1. Двухконтурная схема водяного охлаждения конструкции теплового дизеля

Расчет числа секций радиатора первого контура охлаждения воды дизеля

Необходимое количество секций радиаторов для охлаждения воды определяется на основе решения системы уравнения, описывающих процесс теплообмена:

- - количество тепла, отводимого в холодильник с водой дизеля;

- - это же количество тепла, воспринимаемое воздухом, проходящим через секции.

Таким образом, и получаем уравнение теплового баланса;

- уравнение теплопередачи, характеризующее процесс передачи тепла от воды к воздуху в водо-воздушных секциях радиаторов.

В этих уравнениях: и - расход воды, проходящей через секции радиаторов, кг/с; и - средняя удельная теплоемкость охлаждающей воды и воздуха, Дж/кг·К; и - температура воды и воздуха на входе в секции радиаторов, ?С; и - температура воды и воздуха на выходе из секций радиаторов, ?С; - коэффициент теплопередачи от воды к воздуху. Определяется от весовой скорости воздуха и скорости воды в трубках секций радиаторов холодильника на основе экспериментально полученных зависимостей; - площадь поверхности нагрева с воздушной стороны секций радиаторов; - среднеарифметический температурный напор в холодильнике

.

Количество теплоты, выделяемой дизелем в первый онтур охлаждения Вт. Поскольку мы ранее приняли для проектного тепловоза открытую систему охлаждения, то принимаем температуру ?С. Температуру охлаждающего воздуха на входе в секции радиаторов принимаем равной ?С.

Таблица 3.1. Геометрические параметры серийных секций радиаторов

Параметр

Водовоздушные секции

Длина секций по месту крепления

1356

686

Рабочая длина трубок между решетками, , мм

1206

535

Фронтальная ширина секции, мм

152,5

Глубина секции, мм

187

Поверхность, омываемая жидкостью, , м2

3,04

1,35

Поверхность, омываемая воздухом, , м2

29,6

13,1

Живое сечение для прохода жидкости, , м2

0,00132

Живое сечение для прохода воздуха, , м2

0,149

0,0662

Число трубок в секции

68

Расположение трубок в секции

Шахматное

Наружные размеры трубок, мм

19,5 х 2,2

Толщина стенок трубок, мм

0,55

Число охлаждающих платин

525 х 2

232 х 2

Шаг оребрения, мм

2,3

Масса секции, кг

42,25

24,55

По справочным данным, на основании принятых величин температур, определяем физические параметры теплоносителей:

– для воздуха при температуре ?С коэффициент динамической вязкости Па·с, коэффициент теплопроводности , Вт/м·К, удельная теплоемкость Дж/кг·К;

– для воды при температуре ?С плотность кг/м3, коэффициент динамической вязкости Па·с, удельная теплоемкость Дж/кг·К, коэффициент теплопроводности , Вт/м·К, коэффициент кинематической вязкости м2/с. Для монтажа холодильника принимаются стандартные секции с длиной активной части 1206 мм. Параметры охлаждающих секций радиаторов (Табл. 3.1.).

3.2.1. Определяем ориентировочное число секций первого контура охлаждения, задавшись величиной Vвд.

,

где - массовая скорость воды в трубках секции. Принимается в пределах 900…1500 кг/м2·с. В нашем случае принимаем кг/м2·с.

Массовая скорость воздуха между пластинами оребрения секции находится в пределах 8…14 кг/м2·с. Принимаем в дальнейших расчетах кг/м2·с. Тогда

секций.

3.2.2. Определяем число секций радиаторов, исходя из теплорассеивающей способности

,

где - теплорассеивающая способность секций радиатора при заданных условиях теплообмена, Вт.

где - теплорассеивающая способность секций радиатора при заданных условиях теплообмена, Вт.

, Вт

В этом выражении неизвестной является величина k - коэффициент теплопередачи секции радиатора

, Вт/м2·К,

где Кi - критерий Кирпичева.

3.2.3. Определяем числа Рейнольдса для воды и воздуха при выбранных расчетных температурах. Число Рейнольдса характеризует режим течения жидкости или газа

Находим число Рейнольдса для воды при ?С

,

где dГвд - гидравлический диаметр трубки. м.

Находим число Рейнольдса для воздуха при температуре ?С

,

где dГвз - гидравлический диаметр воздушной стороны секции, м. м.

3.2.4. Определяем величину температурного фактора

,

где Tвд - абсолютная температура воды на входе в секцию, К.

К. -абсолютная температура воздуха на входе в секцию К.

3.2.5. Для полученного ранее значения числа Рейнольдса , рассчитываем критерий Кирпичева

.

3.2.6. Находим величину теоретического коэффициента теплопередачи

.

3.2.7. Определение необходимого количества секций

Используя уравнение теплового баланса и уравнение теплопередачи, находим необходимое количество секций.

С учетом запаса на загрязнение стенок трубок радиаторов принимаем количество секций равным 12 шт.

3.2.8. Определяем температуру воды на выходе из секций радиаторов

.

3.2.9. Определяем температуру воздуха на выходе из секций радиаторов

.

3.2.10. Гидравлическое сопротивление движению воды через водовоздушные секции радиаторов

.

Для всего контура охлаждения воды дизеля гидравлическое сопротивление движению воды необходимо увеличить в 2,5 раза:

3.2.11. Определение необходимой мощности на привод водяного насоса

Предварительное значение расхода мощности:

.

где - расчетный КПД водяного насоса.

Принимаем , тогда:

.

С учетом ответственности выполняемой функции и обеспечения бесперебойной циркуляции воды в контуре охлаждения, предварительно рассчитанную величину необходимой мощности увеличиваем в 2…3 раза. Если принять двухкратный запас мощности, то для привода водяного насоса необходим двигатель мощностью 8 кВт.

3.3. Расчет числа секций радиатора второго контура охлаждения масла и надувочного воздуха

Исходные данные для дизеля 1А-5Д49:

- производительность водяного насоса;

- температура воды на входе в секции радиатора;

Тепловыделение в масло и надувочный воздух соответственно равны (Табл. 2.1.): , .

Для проектируемого дизеля принимаем:

;

- температура охлаждающего воздуха на входе в секции радиатора.

По справочным данным, на основании принятых величин температур, определяем физические параметры теплоносителей:

– для воздуха при температуре ?С коэффициент динамической вязкости Па·с, коэффициент теплопроводности , Вт/м·К, удельная теплоемкость Дж/кг·К;

– для воды при температуре ?С плотность кг/м3, коэффициент динамической вязкости Па·с, удельная теплоемкость Дж/кг·К, коэффициент теплопроводности , Вт/м·К, коэффициент кинематической вязкости м2/с.

Для монтажа охлаждающего устройства применяются стандартные секции с длиной активной части 1206 мм.

3.3.1.Определение ориентировочного числа секций второго контура охлаждения

где: - массовая скорость воды в трубках секции. Принимаем

секций.

3.3.2. Определение числа секций радиаторов исходя из теплорассеивающей способности

,

где - теплорассеивающая способность секции радиатора при заданных условиях теплообмена, Вт.

где - коэффициент теплопередачи секции радиатора.

,

где - критерий Кирпичева.

.

3.3.3. Определение числа Рейнольдса для воды и воздуха

Число Рейнольдса для воды при :

Число Рейнольдса для воздуха при :

3.3.4. Определение величины температурного фактора

3.3.5. Определение критерия Кирпичева

3.3.6. Коэффициент теплопередачи

.

3.3.7. Определение необходимого количества секций

Используя уравнение теплового баланса и уравнение теплопередачи, находим необходимое количество секций.

С учетом запаса на загрязнение стенок трубок радиаторов принимаем количество секций равным 22 шт.

3.3.8. Температура на выходе из секций радиаторов

.

3.3.9. Температура воздуха на выходе из секций радиаторов

.

3.3.10. Гидравлическое сопротивление движению воды через водовоздушные секции радиаторов

.

Для всего контура охлаждения воды дизеля гидравлическое сопротивление движению воды увеличиваем в 2,5 раза:

3.3.11. Определение необходимой мощности на привод водяного насоса

Предварительное значение расхода мощности:

.

где - расчетный КПД водяного насоса.

Принимаем , тогда:

.

С учетом ответственности выполняемой функции и обеспечения бесперебойной циркуляции воды в контуре охлаждения, предварительно рассчитанную величину необходимой мощности увеличиваем в 2…3 раза. Для привода водяного насоса применяем двигатель мощностью 8 кВт.

3.4. Тепловой расчёт водомасляного теплообменника

Используемые на тепловозах водомасляные теплообменники предназначены для охлаждения водой масла дизеля. Для реализации максимального теплосъёма в ограниченных габаритах теплообменника чаще всего применяют противоточно-перекрестное течение жидкостей. Вода проходит по гладким или оребренным с внешней стороны трубкам, завальцованным в трубные доски. Масло, попадающее в теплообменник, ввиду наличия сегментных перегородок, движется поперек трубного пучка, отдавая тепло воде, движущейся по трубкам. Температурные удлинения трубок охлаждающего элемента компенсируются за счет возможности перемещения одной из трубных досок теплообменника.

Рис 3.2. Принципиальная схема конструкции водомасляного теплообменника.

Тепловой расчет сводится к определению величины поверхности охлаждения F теплообменника, а также конструктивных параметров его элементов. В основу методики расчета, как и при определении необходимого количества секций радиаторов, положены уравнения теплопередачи, теплового баланса.

, где Кт - коэффициент теплопередачи от масла к воде Вт/м2·К, ?t - температурный напор между маслом и водой, ?С.

Тогда расчетная поверхность охлаждения теплообменника

.

В этом выражении неизвестны Кт и ?t. Определению этих величин и посвящается значительная часть расчетов.

В соответствии со схемой теплообменника принимаем: температуру масла на входе в теплообменник , температуру масла на выходе из теплообменника , , внутренний диаметр трубок теплообменника , наружный диаметр трубок теплообменника , расстояние между трубками в трубной доске , количество ходов воды в теплообменнике .

Рассчитаем величины расходов масла Gм и воды Gв, которые обеспечивают используемые на дизеле насосы, при соответствующих значениях температур теплоносителей.

3.4.1. Находим величину средней температуры масла в теплообменнике

3.4.2. Рассчитываем температуру воды на выходе из теплообменника

3.4.3. Находим величину средней температуры воды в теплообменнике

3.4.4. Используя данные, находим физические параметры теплоносителей при их средних температурах

Для воды при температуре 72,7 С (на основе табличных данных) плотность , коэффициент динамической вязкости , удельная теплоёмкость , коэффициент теплопроводности , коэффициент кинематической вязкости .

Для масла при температуре 80,0 С плотность , теплоёмкость , коэффициент теплопроводности , коэффициент кинематической вязкости .

3.4.5. Выбираем скорость движения охлаждающей воды в трубках теплообменника в пределах 1,3...2,5 м/с

Принимаем .

3.4.6. Определяем число Рейнольдса

Критерии Прандтля (характеризует физические свойства теплоносителей) и Нуссельта (характеризует интенсивность или режим теплоотдачи) для воды при температуре .

.

3.4.7. Находим коэффициент теплопередачи от внутренней стенки трубки к воде

3.4.8. Выбираем скорость движения масла Vм между перегородками теплообменника в пределах 1,2...2,0 м/с

Принимаем Vм=1,6 м/с.

3.4.9. Рассчитываем и при средней температуре масла в теплообменнике

3.4.10. Из условия, что температура стенки трубки

Принимаем

3.4.11. При температуре стенки трубки находим критерии Прандтля и Нуссельта

, где

В - эмпирический коэффициент. В нашем случае он равен 0,3.

3.4.12. Находим ориентировочное значение коэффициента теплоотдачи от масла к стенке трубки при температуре стенки

3.4.13. Определяем расчетное значение температуры стенки трубки

.

Если ( в пределах 2?С), то принимаем

Если значительно отличаются, то необходимо задаться новым значением и повторить расчет до получения сходимости значений .

Таким образом, разница между составляет 1?С и расчёт можно продолжить.

3.4.14. Рассчитываем коэффициент теплопередачи от масла к охлаждающей воде

3.4.15. Определяем расчётный температурный напор ?t между маслом и водой

3.4.16. Находим предварительное значение расчетной поверхности охлаждения теплообменника

Учитывая возможность загрязнения, увеличиваем расчётную поверхность теплообменника в 1,1 раз. Тогда

3.4.17. Рассчитываем число трубок в теплообменнике

3.4.18. Коэффициент заполнения трубной доски должен находиться в пределах

Принимаем

3.4.19. Рассчитываем внутренний диаметр кожуха теплообменника или диаметр трубной доски

3.4.20. Находим расстояние между трубными досками теплообменника

.

3.4.21. Рассчитываем живое сечение для прохода масла между перегородками теплообменника

3.4.22. Находим величину площади сегмента над перегородками

3.4.23. Находим величину S хорды сегмента над перегородкой

. Величина центрального угла зависит от отношения . В рассматриваемом случае величина . Величина центрального угла в соответствии с табличными данными составляет 114?. Рассчитываем величину хорды S

3.4.24. Ширина осреднённого сечения b для прохода масла над (или под) сегментными перегородками, в соответствии со схемой составляет

3.4.25. Расстояние между сегментными перегородками

3.4.26. Число ходов масла в водомасляном теплообменнике между сегментными перегородками

Принимаем =14 ходов.

3.4.27. Находим окончательную длину трубок между трубными досками, учитывая толщину сегментных перегородок

Принимаем расчетную длину теплообменника 2,7м. Конструктивно теплообменник будет выполняться их двух блоков, длиной 1,35 м.

3.4.28. Чтобы найти гидросопротивление масляного тракта теплообменника рассчитаем число рядов трубок , перпендикулярных потоку масла

Находим отношение и по графику находим величину С (см. рис 3.7. методич. указ.); С=10.

С учетом загрязнений

3.4.29. Гидравлическое сопротивление водяного тракта теплообменника составит

Величина коэффициента определяется в зависимости от принятой скорости и температуры воды в трубках по графику (см. рис. 3.9. методич. указ.). Принимаем величину .

3.4.30. Определяем расход мощности на привод водяного и масляного насосов

Принимая, как и ранее, двукратный запас мощности на привод насосов, окончательно получим и .

3.5. Компоновка охлаждающего устройства проектного тепловоза и выбор вентиляторов

Для выбора типа, размеров и необходимой производительности одного или нескольких вентиляторов необходимо предварительно наметить количество шахт холодильника и определить размеры фронта радиаторов в каждой шахте.

Находим фронтальные размеры шахты при использовании стандартных радиаторов с активной длиной секции 1206мм. Всего в двух контурах охлаждения 34 секции радиаторов.

Значит с одной стороны шахты будет установлено 17 секций.

Тогда

При проектировании тепловозов вентиляторы холодильника выбираются из числа выпускаемых промышленностью. Поскольку тепловозные холодильники характеризуются значительными величинами расходов воздуха и сравнительно небольшими аэродинамическими сопротивлениями воздушных трактов, то для обеспечения этих условий наилучшими являются осевые вентиляторы. Они компактнее, легче, проще по конструкции, а главное, экономичнее центробежных вентиляторов.

Число вентиляторов, обслуживающих каждую шахту, и диаметр рабочего колеса выбирается из условия наилучшего обдувания секций радиатора воздухом и возможности размещения вентилятора. Расчет вентилятора в этом случае позволяет определить его частоту вращения и угол установки лопастей, при котором к.п.д. вентилятора будет наибольшим. Определяется также и величина мощности, затрачиваемой на привод вентилятора.

Учитывая величину фронтальной поверхности проектируемого холодильника выбираем для охлаждения секций два вентилятора. Диаметр рабочего колеса вентилятора находится с учетом технологических и конструктивных допусков на установку в виде

К расчету принимаем 2 вентилятора серии УК-2М с диаметром рабочего колеса 1200 мм.

В дальнейшем следует определить параметры аэродинамической сети : необходимый расход воздуха и напор воздуха , привести зависимость к безразмерной характеристики сети и совместимость её (т.е. решить совместно) с безразмерной аэродинамической характеристикой вентилятора .

Кроме этого определяются: угловая скорость вращения вентиляторного колеса , угол установки лопастей , к.п.д. вентилятора и расход мощности на их привод.

3.5.1. Определяем величину средней температуры воздуха в шахте холодильника

3.5.2. Определяем необходимый расход воздуха в аэродинамической сети при температуре

,где - плотность воздуха при температуре 71,6 °С.

, где 287- значение удельной газовой постоянной воздуха

3.5.3. Для расчета полного напора или давления воздуха, создаваемого вентиляторами , необходимо рассчитать скорость воздушного потока и все составляющие аэродинамического сопротивления движению воздуха

Определяем скорость воздуха в сечении, омываемом лопастями вентилятора

Определяем степень поджатия потока воздуха

,

где - общая площадь фронта радиатора радиаторов, обслуживаемая вентилятором, - высота шахты холодильника с радиаторами (можно принимать равной 1,9 м)

Рис. 3 Принципиальная схема аэродинамической сети шахты холодильника

Определяем аэродинамическое сопротивление боковых жалюзи , где - коэффициент сопротивления проходу воздуха через боковые жалюзи,

- плотность воздуха при температуре 40°С, - скорость воздуха перед фронтом боковых жалюзи.

,

где - фронтальная поверхность одной секции радиатора

Определяем аэродинамическое сопротивление секций

,

где - число Эйлера.

Подсчитывается в зависимости от Величины числа Рейнольдса, полученного ранее для воздуха при тепловом расчете секций (). В нашем случае находится в пределах 1400…3382. Значит число Эйлера рассчитывается на основании выражения

,

где -температурный фактор, рассчитываемый в виде

Определяем аэродинамическое сопротивление шахты

,

где - коэффициент аэродинамического сопротивления шахты

Рассчитываем аэродинамическое сопротивление вентилятора

Находим аэродинамическое сопротивление верхних жалюзи

Рассчитаем полное давление воздуха, которое необходимо обеспечить вентилятору

3.5.4. Определяем угол закрутки лопаток вентилятора, соответствующий максимальному значению к.п.д.-

Выполнение этой операции связано с использованием безразмерной характеристики вентилятора, представленной в относительных значениях расхода и напора воздуха . Поэтому, чтобы воспользоваться кривыми (рис. 4), необходимо полученные нами ранее значения G и Н вентилятора привести к безразмерному виду.

Таблица 4

Параметры

Частота вращения, об/мин

1430

1590

1750

1900

Окружная скорость

90

100

110

120

Коэффициент расхода воздуха вентилятором

102

113

124

136

Коэффициент напора воздуха

8181

10100

12221

14544

Относительный расход воздуха,

0,29

0,27

0,24

0,22

Относительный напор воздуха,

0,17

0,14

0,11

0,095

С этой целью задаемся несколькими, произвольно выбранными значениями угловой скорости вращения об/мин рабочего колеса вентилятора и подсчитываем для них окружную скорость внешних кромок лопаток рабочего колеса, имея в виду, что максимальное значение . Найденные таким образом величины позволяют найти интересующие нас значения и сети.

5

По полученным парным значениям и на диаграмме (рис 4) наносим 4 точки и соединяем их плавной кривой. Эта линия является безразмерной характеристикой сети. Точки пересечения безразмерной характеристики сети с безразмерными характеристиками вентилятора при различных углах наклона лопаток являются рабочими точками вентилятора.

Полученные рабочие точки дают возможность определить максимальное значение к.п.д. вентилятора и выбрать угол установки его лопастей. Рабочим участком аэродинамической характеристики вентилятора должна приниматься та его часть, на которой при заданном угле установки лопаток.

В соответствии с данными, представленными на рис.4 и угол установки лопастей .

3.5.5. Определяем расчетную угловую скорость вращения вентиляторного колеса

3.5.6. Находим величину мощности на привод вентилятора

Соответственно на расход двух вентиляторов холодильника необходимо 116 кВт.

Делись добром ;)