logo
Расчет тяговых характеристик тепловозов с электрической передачей и электровозов

2. Физические основы преобразования энергии в электрических машинах

2.1. Тяговые электродвигатели постоянного тока

Основные соотношения величин, которые характеризуют физические явления, лежащие в основе работы электрических машин (электродвигателя и генератора), можно получить на основании законов Ампера и Фарадея [1].

Рассмотрим действие однородного магнитного поля, созданного полюсами С и Ю, на проводник с током I. Вокруг проводника возникает магнитное поле, направление которого определяется по правилу буравчика (рис.2.1,а). Справа от проводника, где направления линий магнитного поля проводника и полюсов совпадают, происходит сгущение линий и, следовательно, увеличение магнитной индукции поля. Слева от проводника, где магнитные линии поля проводника и внешнего поля направлены навстречу друг другу, происходит разрежение магнитного поля (уменьшение магнитной индукции). Вследствие упругости, магнитные линии стремятся сократиться по длине и выталкивают проводник с током из области сгущения линий в область разрежения (рис.2.1,б).

Действие магнитного поля на проводник (а,б) и виток (в) с током

а) б) в)

Рис.2.1.

Результирующая электромагнитная сила F, действующая на проводник, определяется законом Ампера: электромагнитная сила, действующая на проводник с током, находящийся в магнитном поле и расположенный перпендикулярно направлению поля, равна произведению силы тока I, индукции магнитного поля B и длины проводника L

F=B.I.L. (2.1)

Из формулы (2.1) следует, что B=F/(I.L). Таким образом, магнитная индукция, количественно характеризующая интенсивность магнитного поля, равна максимальной силе, действующей в магнитном поле на участок единичной длины проводника, по которому течет ток силой 1 А.

В системе СИ единица измерения магнитной индукции В - тесла.

1 Тл = 1 Н /(1 м х 1 А) .

Направление действия электромагнитной силы F определяют по правилу левой руки: ладонь левой руки нужно расположить так, чтобы магнитные линии входили в нее, и четыре вытянутых пальца совместить с направлением тока; тогда расположенный под углом большой палец укажет направление действия силы F.

Если вместо проводника поместить в магнитное поле виток с током и применить к нему правило левой руки, получим, что электромагнитные силы F, действующие на нижнюю и верхнюю стороны витка, будут направлены в разные стороны (рис.2.1,в). В результате действия этих двух сил возникает электромагнитный вращающий момент М на плече D.cos?

М=F.D.cos?, Н.м, (2.2)

где D - расстояние между сторонами витка;

? - угол между направлениями линий магнитного поля и плоскости витка.

Наибольший вращающий момент будет иметь место, когда виток с током пересекает линии магнитного поля (?=0о,180о), а наименьший - когда через площадь, ограниченную витком, проходит наибольший магнитный поток (?=90о,270о).

Свойство рамки с током поворачиваться в магнитном поле лежит в основе создания электродвигателей, преобразующих электрическую энергию в механическую.

При пересечении проводником магнитных силовых линий в нем возникает или индуцируется электродвижущая сила (ЭДС). Это явление носит название электромагнитной индукции.

ЭДС, действующая в проводнике, представляет собой разность потенциалов на его концах и, следовательно, измеряется в вольтах (В).

ЭДС индуцируется в проводнике независимо от того, включен ли он в замкнутую цепь или нет. При замыкании цепи проводника в нем потечет электрический ток, вызванный ЭДС.

Явление электромагнитной индукции лежит в основе создания генераторов - электрических машин для преобразования механической энергии в электрическую.

Значение ЭДС, индуцированной в проводнике, определяется законом электромагнитной индукции Фарадея: ЭДС, наведенная в проводнике, прямо пропорциональна индукции магнитного поля В, длине проводника L и скорости его перемещения в направлении, перпендикулярном силовым линиям.

Направление ЭДС индукции определяют по правилу правой руки: если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец совместить с направлением движения проводника, то вытянутые четыре пальца укажут направление индуцированной ЭДС.

В проводниках витка, движущихся в магнитном поле с постоянной окружной скоростью V, наводится ЭДС, переменная как по величине, так и по направлению (рис.2.2):

е=B.V.L.cos?, В, (2.3)

где ? - угол между направлениями линий магнитного поля и плоскости витка.

При ?=0о,180о проводники I и II движутся перпендикулярно силовым линиям магнитного поля; в этом положении витка разность потенциалов на его концах А и Б, то есть ЭДС, максимальна. При ?=90о,270о проводники I и II перемещаются вдоль силовых линий поля, поэтому ЭДС в витке равна нулю.

В момент прохождения углов ?=90о,270о изменяются направления движения проводников I и II относительно линий магнитного поля. Поэтому, в соответствии с правилом правой руки, изменяется направление ЭДС в витке и, следовательно, полярность его концов А и Б (см. рис.2.2).

Рис.2.2. Электродвижущая сила в витке, вращающемся в магнитном поле

Таким образом, в витке с током, находящемся в переменном магнитном поле, возникает электродвижущая сила. Одновременно на проводники витка действуют электромагнитные силы. Эти процессы являются основой функционирования электрических машин, то есть устройств для взаимного преобразования электрической и механической энергий.

Неразрывная связь электромагнитных явлений, вызванных взаимодействием магнитных полей полюсов и витка с током, обусловливает свойство обратимости электрических машин постоянного тока. Оно заключается в том, что любая машина может работать как генератором, так и двигателем и может переходить из генераторного режима в двигательный и наоборот. Указанное свойство широко используется на локомотивах. Например, на тепловозах тяговый генератор работает в режиме двигателя (стартера) при запуске дизеля, а тяговый двигатель - в режиме генератора при электродинамическом торможении [2].

В связи с наличием у электрических машин постоянного тока свойства обратимости, принцип действия машины более подробно рассмотрим на примере электродвигателя.

Принцип действия и общее устройство электродвигателя постоянного тока

Электродвигатель - это электрическая машина, предназначенная для преобразования электрической энергии в механическую. Если двигатель получает питание напряжением постоянной полярности, то он называется двигателем постоянного тока.

Простейшая схема такого двигателя приведена на рис.2.3, где в двухполюсной магнитной системе расположена обмотка якоря (показаны два последовательно соединенных элементарных проводника, образующих виток, концы которого подключены к двум пластинам коллектора К1 и К2). Подвод напряжения к коллектору осуществляется щетками Щ1 и Щ2.

Рис.2.3. Схема простейшего электродвигателя постоянного тока

Непрерывное взаимодействие магнитного поля, создаваемого полюсами С и Ю, и магнитного поля якоря, возникающего при протекании по его обмотке тока Iд, обусловливает возникновение электромагнитных сил F1, F2 и вращающего момента на валу якоря. Одновременно в якорной обмотке индуцируется ЭДС, которая направлена, в соответствии с правилом правой руки, навстречу подводимому к двигателю напряжению (эту ЭДС иногда называют противо-ЭДС двигателя).

Таким образом, подводимое к электродвигателю напряжение стремится создать ток в обмотке якоря, чему препятствует индуцируемая ЭДС. Поэтому величина тока Iд в обмотке якоря работающего электродвигателя будет определяться не подводимым к ней напряжением Uд, а разностью между напряжением и наведенной в обмотке якоря ЭДС Ед:

Iд=(Uд-Eд)/Rд, А, (2.4)

где Rд - суммарное сопротивление якорной цепи, Ом.

Из рис.2.3 видно, что ток Iд в якорной обмотке направлен от коллекторной пластины К1 (щетка Щ1 «+») к коллекторной пластине К2 (щетка Щ2 «-»). При повороте витка на угол 180о пластина К1 переходит под щетку Щ2 «-», а пластина К2 - под щетку Щ1 «+». Это приводит к изменению направления тока в витке на противоположное - от пластины К2 к пластине К1. Одновременно в витке меняется направление ЭДС индукции (в соответствии с правилом правой руки). Такое переключение направления тока в витке якорной обмотки происходит при каждом переходе элементарного проводника из зоны действия северного полюса С в зону действия южного полюса Ю и наоборот. Процесс переключения, называемый коммутацией, осуществляется коллекторно-щеточным узлом.

Следовательно, коллектор электродвигателя преобразует постоянный ток внешней цепи в переменный ток якорной обмотки. Примечательно, что коллектор электрического генератора постоянного тока преобразует переменный ток якорной обмотки в постоянный ток внешней цепи, то есть служит механическим выпрямителем.

Количество коллекторных пластин зависит от характеристик обмотки якоря, которая состоит из множества витков, соединенных друг с другом и с пластинами коллектора по определенной схеме. К числу характеристик якорной обмотки относят [1]:

количество проводников якорной обмотки N;

число параллельных ветвей обмотки 2а.

Кроме того, конструкцию электрической машины постоянного тока характеризует такой параметр, как число главных полюсов 2р.

Главные полюсы обеспечивают создание рабочего магнитного поля в электромашине. Для усиления и регулирования магнитной индукции поля В в качестве главных полюсов используют электромагниты. Обмотки электромагнитов называют обмотками возбуждения, а ток, протекающий по ним, - током возбуждения. С увеличением тока возбуждения возрастает магнитная индукция поля В и магнитный поток возбуждения Ф (величины Ф и В прямо пропорциональны друг другу).

Помимо главных полюсов, в конструкции мощных электродвигателей предусмотрены добавочные полюса, действие которых улучшает процессы коммутации. Обмотки этих полюсов включают последовательно с якорной обмоткой.

Главные и добавочные полюсы, остов, якорь и воздушный зазор между якорем и полюсами образуют магнитную цепь двигателя (рис.2.4.).

В качестве тяговых электродвигателей на отечественных локомотивах обычно используют двигатели постоянного тока последовательного возбуждения. В двигателях этого типа обмотки главных, дополнительных полюсов и якоря соединены последовательно (рис.2.5, а). Иногда на электрических схемах обмотку якоря электродвигателя совмещают с обмоткой дополнительных полюсов (рис. 2.5, б).

Рис.2.4. Магнитная цепь электродвигателя постоянного тока. 1 - добавочный полюс; 2 - обмотка возбуждения добавочного полюса; 3 - главный полюс с обмоткой возбуждения; 4 - якорь с рабочей (якорной) обмоткой

Рис.2.5. Графическое изображение двигателей в электрических схемах

Я12 - обмотка якоря и добавочных полюсов;

С12 - обмотка возбуждения главных полюсов

Реверсирование тягового двигателя, то есть изменение направления вращения его якоря, можно осуществить путем изменения направления тока в обмотках возбуждения Iв либо в обмотке якоря Iд. На локомотивах нашел применение первый из этих способов - изменением направления тока в обмотках возбуждения, которое осуществляют с помощью специального электрического аппарата - реверсора (рис.2.6).

Рис. 2.6. Схема реверсирования тягового двигателя локомотива

При одновременном изменении направления тока в обмотках якоря и главных полюсов направление вращения вала электродвигателя не меняется.

Основные параметры и показатели работы электрических двигателей

Одним из наиболее важных параметров электродвигателя является его мощность. Чем большую мощность развивает электродвигатель, тем больший ток проходит по его обмоткам и, в соответствии с законом Джоуля-Ленца, больше тепла выделяется в проводниках. В результате теплового действия тока обмотки и другие детали двигателя нагреваются, их температура становится выше температуры окружающей среды.

Предельно допустимые превышения температур частей электрических машин по отношению к температуре окружающей среды не должны превышать норм, регламентированных ГОСТом. В зависимости от времени, в течение которого части двигателя, работающего в условиях нормально действующей вентиляции, нагреваются до максимально допустимой температуры, ввели понятия продолжительной и часовой мощности [3].

Продолжительной называют наибольшую мощность, которую может развивать двигатель в течение неограниченного времени без повышения температуры частей двигателя сверх максимально допустимого значения.

Под часовой понимают наибольшую мощность, которую может развивать двигатель в течение одного часа без повышения температуры частей двигателя сверх максимально допустимого значения. При этом полагают, что температура частей двигателя в начале испытания равна температуре окружающей среды, которую считают равной 25оС.

Параметры электрической машины: напряжение, сила тока, частота вращения вала якоря, к.п.д. - соответствующие работе при продолжительной мощности, называют длительными, а реализуемые при часовой мощности - часовыми. Обычно технические данные тяговых двигателей электровозов приводят для двух режимов: продолжительного и часового [3], а тяговых двигателей тепловозов - для одного режима: продолжительного [4]. Поэтому далее будем считать, что номинальным режимом работы тяговых электромашин тепловозов является продолжительный режим, а электровозов - часовой.

Мощность электрического двигателя, развиваемая на номинальном режиме

Рдн=Uдн.Iдн.?дн.10-3, кВт, (2.5)

где Uдн ,Iдн , ?дн - номинальные значения напряжения, силы тока и к.п.д. двигателя.

Значение к.п.д. ?дн, оценивающее потери энергии при работе машины, для локомотивных тяговых двигателей составляет 90-94%.

Различают три составляющие потерь энергии в электрической машине: электрические, магнитные и механические. Электрические потери в двигателе обусловлены сопротивлением обмоток якоря и полюсов, а также коллекторно-щеточного узла прохождению тока. Магнитные потери обусловлены возникновением вихревых токов Фуко в массивных деталях двигателя, сопротивлением магнитному потоку воздушных промежутков в магнитной цепи электродвигателя и гистерезисом. Механические потери связаны с трением в подшипниковых узлах и аэродинамическим сопротивлением, возникающими при вращении якоря.

Режим работы электродвигателя, при котором величина силы тока превышает допустимые значения, называется перегрузочным. Он ведет к сокращению срока службы электрической машины вследствие перегрева и снижения прочности изоляции ее обмоток.

В соответствии с формулой (2.4), значение силы тока в якорных обмотках двигателя Iд взаимосвязано с режимами работы локомотива, а также характеристиками электродвигателя. Зависимость между напряжением Uд, приложенным к двигателю, и силой тока Iд определяется законами Ома и Кирхгофа:

Uд=Eд+Iд.Rд, В, (2.6)

где Eд - ЭДС, индуцируемая в якорной обмотке, В;

Iд.Rд - падение напряжения в электродвигателе при прохождении по нему тока (составляет примерно 0,04.Uд), В;

Rд - суммарное сопротивление якорной цепи двигателя, Ом.

Фундаментальные законы физики: законы Ампера (2.1),(2.2) и Фарадея (2.3), - рассмотренные в п.2.1 применительно к отдельному витку (проводнику), для электрического двигателя со сложной якорной обмоткой имеют вид:

Ед = Се.Фд.nд, В; (2.7)

Мэм.Фд.Iд, Н.м, (2.8)

где Мэ - электромагнитный момент на валу двигателя (вращающий момент без учета механических потерь в двигателе);

Фд - магнитный поток возбуждения двигателя, Вб;

nд - частота вращения вала якоря, об/мин;

Сем - конструктивные постоянные двигателя для расчета ЭДС и
вращающего момента соответственно.

Се=(p.N)/(60.a); (2.9)

См=(p.N)/(2.p.a), (2.10)

где р - число пар главных полюсов двигателя;

N - количество проводников якорной обмотки;

а - число пар параллельных ветвей якорной обмотки.

Формулы (2.5)-(2.10) создают основу для расчетов рабочих характеристик электродвигателей (раздел 5).

Принцип действия асинхронного двигателя

Если к зажимам трехфазной статорной обмотки подвести трехфазное напряжение, то по статорной обмотке будет протекать трехфазный переменный ток, который создаст вращающееся магнитное поле статора. Это поле будет пересекать проводники роторной обмотки и индуцировать в них ЭДС. При этом в замкнутой роторной обмотке возникнут токи. Силы, действующие на эти токи со стороны поля статора, создадут вращательный момент и ротор начнет вращаться в сторону вращения поля статора. По мере разгона ротора уменьшается скорость относительного движения ротора и поля статора, уменьшаются токи в роторной обмотке и, как следствие, уменьшается вращающий момент. Если предположить, что частота вращения ротора достигнет частоты вращения поля статора, то поле статора и ротор окажутся неподвижны друг относительно друга и вращающий момент станет равным нулю, т.к. тока в роторной обмотке не будет. Следовательно, частота вращения ротора п будет всегда меньше частоты вращения поля статора по. Т.е. ротор вращается с асинхронной скоростью, которая автоматически устанавливается такой, чтобы вращающий момент равнялся тормозному моменту, создаваемому механической нагрузкой на валу ротора. Чем больше тормозной момент, тем меньше частота вращения ротора, что приводит к увеличению тока в роторной обмотке и, как следствие, к увеличению вращающего момента до тех пор, пока вращающий момент не станет равным тормозному моменту. Число (обычно выраженное в процентах), показывающее, во сколько раз относительная частота вращения ротора, равная по - п, меньше частоты вращения поля статора, называется скольжением и обозначается s. Таким образом:

, или в процентах 100% (7.2)

Отсюда (7.3)

Частота ЭДС, которая индуцируется вращающимся магнитным полем статора в обмотке ротора, зависит от скольжения и определяется по формуле

, (7.4)

где f1 - частота напряжения питающей сети

2.2 Принцип действия синхронного генератора

Постоянный магнитный поток, создаваемый током в обмотке возбуждения ротора, замыкается через сердечник ротора, воздушный зазор и сердечник статора. При вращении ротора каким-либо приводом с некоторой частотой n с этой же частотой будет вращаться и магнитное поле ротора. Пересекая проводники трехфазной статорной обмотки, это поле индуцирует в ней трехфазную ЭДС, изменяющуюся с частотой:

, (7.7)

где р - число пар полюсов ротора

При подключении к обмотке статора трехфазной нагрузки проходящий по обмотке статора ток создает вращающееся магнитное поле статора, частота вращения которого определяется по формуле (7.1). Число пар полюсов ротора и число пар полюсов статорной обмотки одинаково, поэтому из сравнения формул (7.1) и (7.7) видно, что n0 = n, т.е. частота вращения поля статора равна частоте вращения ротора. Поэтому машина называется синхронной.

2.3 Трансформаторы

Назначение и устройство. Трансформатором называется статическое электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение - понижающих.

Принцип действия. Принцип действия трансформатора, основанный на явлении взаимоиндукции, рассмотрим на примере однофазного двухобмоточного трансформатора (рис. 6.3). Если на первичную обмотку с числом витков W1 подать переменное напряжение u1, то протекающий по обмотке переменный ток i1 создаст в магнитопроводе переменный магнитный поток Ф, пронизывающий обе обмотки трансформатора и индуцирующий в них переменные ЭДС е1 и е2. Если ко вторичной обмотке подключить нагрузку, то под действием ЭДС е2 в цепи вторичной обмотки будет протекать переменный ток i2. Отношение ЭДС, равное отношению числу витков первичной и вторичной обмоток называется коэффициентом трансформации трансформатора:

(6.1)

Пренебрегая незначительными падениями напряжения в обмотках, отношение ЭДС можно заменить отношением напряжений:

(6.2)

Следовательно, у повышающих трансформаторов k<1, а у понижающих трансформаторов k>1.

Преобразование энергии в трансформаторах происходит с незначительными потерями, и подводимая к трансформатору полная мощность приблизительно равна отдаваемой полной мощности . Откуда , т.е.

(6.3)

Следовательно, по обмотке ВН протекает ток примерно в k раз меньший, чем по обмотке НН.

Учитывая это, обмотку ВН, имеющую большее число витков, выполняют проводом меньшего сечения, чем обмотку НН