7.3. Основные закономерности процесса горения топлива
Горение топливо-воздушной смеси в двигателе представляет собой сложный физико-химический процесс, который можно условно рассматривать состоящим из последовательно протекающих процессов:
а) распыливания топлива;
б) его испарения;
в) смешения паров топлива с воздухом;
г) воспламенения образовавшейся горючей смеси, т.е. химической реакции окисления (горения).
В действительности указанные процессы протекают не строго последовательно, а в значительной степени одновременно. Но такое разделение позволяет лучше уяснить сущность сложного процесса горения и проанализировать достаточно полно влияние на него различных факторов. Рассмотрим подробнее эти процессы.
Распыливание представляет собой процесс дробления жидкого топлива на мелкие капли. При уменьшении среднего диаметра капель общая их поверхность увеличивается, что ускоряет прогрев и испарение жидкости и облегчает последующий процесс смешения. В ГТД распыливание происходит в процессе впрыска топлива под давлением через форсунки. Вытекающая из форсунки струя топлива распадается на капли под воздействием сил сопротивления среды, в которую производится впрыск, а также внутренних сил, обусловленных турбулентным движением, возникающим в самой струе при ее течении. Распыл улучшается при увеличении перепада давления на форсунке и при повышении плотности среды. В ГТД применяются как струйные форсунки, так и центробежные форсунки, в которых поток топлива до выброса его в камеру сгорания предварительно закручивается, чтобы потом в распаде струи на капли приняли участие центробежные силы. Применяются также форсунки, в которых распыл происходит под воздействием сжатого воздуха (эмульсионные форсунки, работающие по принципу пульверизатора).
Испарение распыленного топлива сопровождается поглощением теплоты. Скорость испарения распыленного топлива определяется интенсивностью подвода теплоты от воздуха к каплям и скоростью отвода от них образовавшегося пара, т.е. температурой и давлением воздуха, скоростью его движения относительно капли, размером капель и их температурой.
Смешение паров топлива с воздухом происходит путем диффузии и в значительной мере вследствие турбулентного перемешивания. Скорость протекания процесса смешения определяются распределением капель топлива в воздушном потоке и интенсивностью турбулентного перемешивания.
Воспламенение горючей смеси топлива с воздухом происходит от факела пламени, непрерывно существующего в работающих камерах сгорания. Возможно также образование в смеси начального очага пламени в результате воздействия постороннего источника высокой температуры (струи горящей смеси, электрической искры и т.п.). Но образование начального очага пламени не всегда ведет к воспламенению всей смеси. При слишком богатой и слишком бедной смеси местное тепловыделение оказывается недостаточным для нагревания соседних слоев до температуры воспламенения. В результате пламя, возникшее у источника зажигания, гаснет. Предельные значения коэффициента избытка воздуха (и), при которых пламя от источника зажигания еще может распространяться по всему объему смеси, называютпределами воспламеняемости смеси. Понижение давления и особенно температуры смеси сужает эти пределы. Обычно пределы воспламеняемости однородных гомогенных смесей авиационных керосинов с воздухом составляют отдо.
Горение топливо-воздушной смеси представляет собой химическую реакцию окисления горючих веществ кислородом воздуха, сопровождающуюся выделением большого количества теплоты и образованием видимого пламени. В неподвижнойоднородной топливо-воздушной смеси процесс горения происходит в очень узкой светящейся зоне, перемещающейся в сторону еще не сгоревшей части объема смеси и называемойфронтом пламени. Перемещение фронта пламени при этом происходит с так называемойнормальнойскоростью горения(скорости перемещения фронта пламени по нормали к нему). Значениеопределяется во многом кинетикой химических реакций (поэтому такое горение однородной смеси часто называюткинетическим). Оно зависят, главным образом, от состава смеси (т.е. от рода топлива и коэффициента избытка воздуха) и ее температуры. Максимальная скорость распространения пламени достигается при значениях примерно 0,8…0,9, а с увеличением или уменьшением значительнопадает. С увеличением температуры смесисущественно возрастает, а при повышении давления несколько падает.
Но при этом важно отметить, что нормальная скорость горения керосино-воздушных смесей не превышает примерно 2 м/с.И если горючая смесь движется, то до тех пор, пока её течение имеет ламинарный характер, скорость распространения пламени относительно смеси остается практически такой же. Но, если поток турбулентный, то картина существенно изменяется. Турбулентность, искривляя фронт пламени, резко увеличивает его поверхность, повышая тем самым объем смеси, вовлекаемый в процесс горения в единицу времени. При большой степени турбулентости фронт пламени разрывается, и от него отделяются небольшие объемы, которые, проникая в свежую смесь, воспламеняют ее, еще больше ускоряя процесс. Горение идет уже в некотором объеме, называемомзоной горения.Скорость распространения пламени в турбулентном потоке зависит не столько от физико-химических свойств смеси, определяющих, сколько от степени турбулентности потока. Эта степень турбулентности в камерах сгорания ГТД такова, что скорость турбулентного распространения пламени в них во много раз больше. Но с понижением давления в потоке топливной смеси (например, при увеличении высоты полета) его турбулентность снижается из-за уменьшения числаRe. Это отрицательно сказывается на скорости горения .
В камерах сгорания ГТД топливо-воздушная смесь образуется непосредственно вблизи зоны горения. При этом в общем случае в зону горения поступает неоднородная топливо-воздушная смесь с частично не успевшими испариться каплями топлива, т.е. гетерогенная смесь. При горении такой смеси большую роль играет процесс диффузии паров топлива в воздушный поток (диффузионное горение). Исследования показывают, что скорость распространения пламени в таких смесях имеет тот же порядок, что и . Однако пределы значений коэффициента избытка воздуха (среднего по всему объему смеси), в которых возможно устойчивое горение, в этом случае расширяются, так как, например, при общем обеднении смеси местные концентрации паров топлива вокруг испаряющихся капель могут быть более благоприятными для воспламенения и сгорания.
- Предисловие
- Введение
- Турбореактивный одноконтурный двигатель (трд)
- Турбореактивный двигатель с форсажом (трдф)
- Двухконтурный турбореактивный двигатель без смешения потоков (трдд)
- Двухконтурный турбореактивный двигатель со смешением потоков (трдДсм)
- Двигатели непрямой реакции
- Турбовальные двигатели (тВаД)
- Турбовинтовые двигатели (твд)
- Часть 1. Основы теории элементов авиационных гтд
- 1.1. Уравнение неразрывности
- 1.2. Уравнение сохранения энергии
- 1.3. Уравнение первого закона термодинамики
- 1.4. Обобщенное уравнение бернулли
- 1.5. Теорема эйлера об изменении количества движения
- Глава 2 тяга, мощность и удельные парамеры авиационных двигателей
- 2.1. Двигатель и силовая установка
- 2.2. Тяга реактивного двигателя
- 2.3. Эффективная тяга силовой установки
- 2.4. Внешнее сопротивление силовой установки и его составляющие
- 2.5. Удельные параметры авиационных гтд
- Удельные параметры гтд прямой реакции
- Удельные параметры гтд непрямой реакции
- Глава 3 теория ступени компрессора гтд
- 3.1. Назначение компрессоров гтд, их типы
- И основные требования к ним
- 3.2. Схема и принцип действия ступени осевого компрессора
- 3.3. Работа, затрачиваемая на вращение колеса ступени
- 3.4. Изображение процесса сжатия воздуха в ступени в p, V- и t,s- координатах
- 3.5. Основные параметры ступени компрессора
- Геометрические параметры
- Газодинамические и кинематические параметры
- 1. Степень повышения давления в ступени
- 2. Адиабатная работа сжатия воздуха в ступени
- 3. Кпд ступени
- 5. Числа Маха на входе в рк и на.
- 6. Коэффициент расхода
- 7. Коэффициент адиабатного напора
- 8. Степень реактивности ступени.
- 3.6. Условия совместной работы элементов ступени, расположенных на различных радиусах
- 3.7. Профилирование ступеней по закону постоянства циркуляции
- 3.8. Параметры и характеристики компрессорных решеток профилей
- Параметры профиля и решетки профилей
- Характеристики решеток профилей
- Влияние чисел м и Re на характеристики компрессорных решеток
- 3.9. Особенности течения воздуха в лопаточных венцах осевого компрессора
- 3.10. Особенности трансзвуковых и сверхзвуковых ступеней осевого компрессора
- 3.11. Особенности вентиляторных ступеней трдд с большой степенью двухконтурности
- 3.12. Схема и особенности работы центробежной ступени компрессора
- 3.13. Работа вращения колеса и основные параметры центробежной ступени
- Глава 4
- 4.1. Основные параметры многоступенчатого компрессора (каскада) и их связь с параметрами ступеней
- 4.2. Формы проточной части осевого компрессора (каскада)
- 4.3. Распределение работы сжатия воздуха между ступенями компрессора (каскада)
- Глава 5 характеристики компрессоров и их регулирование
- 5.1. Общие представления о характеристиках компрессоров и методах их определения
- 5.2. Применение теории подобия к построению характеристик компрессора
- 5.3. Характеристики ступени осевого компрессора
- 5.4. Срывные режимы работы ступени
- 5.5. Характеристики нерегулируемых многоступенчатых компрессоров Совместная работа ступеней в многоступенчатом компрессоре
- Граница устойчивой работы многоступенчатого компрессора
- 5.6. Срывные и неустойчивые режимы работы многоступенчатых компрессоров
- 5.7. Рабочие режимы и запас устойчивости компрессора в системе гтд
- 5.8.Задачи и способы регулирования компрессоров гтд
- Перепуск воздуха
- Поворот лопаток направляющих аппаратов
- Разделение компрессора на каскады (группы ступеней)
- Глава 6 газовые турбины гтд
- 6.1. Назначение турбин гтд и основные
- Требования к ним
- 6.2. Схема и принцип работы ступени турбины
- 6.3. Работа газа на окружности колеса ступени
- 6.4. Изображение процесса расширения газа в ступени в p,V- и I,s- координатах
- 6.5. Основные параметры ступени турбины Геометрические параметры
- Газодинамические параметры
- Кинематические параметры
- 6.6. Потери в ступени турбины и их зависимость от различных факторов
- Потери в ступени турбины
- Влияние параметра u /c1 на кпд ступени
- 6.7. Основные параметры многоступенчатой турбины и их связь с параметрами её ступеней
- 6.8. Способы представления характеристик ступени газовой турбины
- 6.9.Характеристики ступени турбины
- Характеристики ступени турбины
- Глава 7 камеры сгорания гтд
- 7.1. Назначение камер сгорания и основные
- Требования к ним
- 7.2. Основные параметры камер сгорания гтд
- 7.3. Основные закономерности процесса горения топлива
- 7.4. Типы основных камер сгорания гтд и организация процесса горения в них
- 7.5. Характеристики камер сгорания авиационных гтд
- 7.6. Потери полного давления в камерах сгорания гтд
- 7.7. Определение расхода топлива в камерах сгорания
- 7.8. Назначение камер смешения и основные требования к ним
- 7.9. Схемы камер смешения и картина течения в них
- 7.10. Расчет параметров потока за камерой смешения
- Глава 8 входные и выходные устройства авиационных силовых установок
- 8.1.Типы входных устройств и их классификация
- 8.2. Основные параметры входных устройств
- 8.3. Особенности дозвуковых ходных устройств
- 8.4. Организация рабочего процесса в сверхзвуковых входных устройствах внешнего сжатия
- 8.5. Назначение выходных устройств и предъявляемые к ним требования
- 8.6.Схемы, основные параметры и режимы работы дозвуковых выходных устройств
- Скорость истечения газа из суживающегося сопла и режимы его работы
- 8.7. Потери в выходных устройствах и способы их оценки
- 8.8.Устройства реверса тяги
- Турбовальных гтд вертолетов
- Часть 2. Термодинамический цикл, совместная
- 1.2. Зависимость работы и внутреннего кпд реального цикла от π и δ
- Зависимость работы и внутреннего кпд цикла
- Оптимальная степень повышения давления в компрессоре
- Зависимость работы и внутреннего кпд цикла от степени подогрева воздуха δ.
- 1.4. Тяговая работа и тяговый кпд гтд прямой реакции
- 1.5. Полный кпд гтд прямой реакции
- 1.6. Оптимальное распределение работы цикла между контурами в трдд без смешения потоков
- 1.7. Оптимальное значение степени повышения давления в вентиляторе трдд со смешением потоков
- 1.8. Связь удельных параметров трд и трдд с параметрами рабочего процесса
- 1.9. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени повышения давления в цикле
- Зависимость Руд и Судот π для одноконтурных двигателей
- Зависимость Руд и Суд от π для двухконтурных двигателей
- 1.10. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени подогрева рабочего тела в цикле
- Зависимость Руд и СудотΔ для двухконтурных двигателей
- Совместная работа элементов одновальных газогенераторов
- 2.1. Функциональные модули авиационных силовых становок
- 2.2. Управляемые параметры и управляющие факторы
- 2.3. Совместная работа элементов одновальных газогенераторов и одновальных трд
- 2.4. Рабочие линии на характеристике компрессора одновального газогенератора
- 2.5. Критериальные характеристики одновальных газогенераторов
- 2.6. Программы управления одновальных гг и
- Одновальных трд, управляемых по одному параметру
- Рассогласование ступеней компрессора в одновальном гг
- (И одновальном трд)
- Программы управдения одновальных гг и одновальных трд
- Глава 3 Совместная работа элементов и программы управления двухконтурных двигателей
- 3.1. Совместная работа элементов трдДсм
- 3.2. Рабочие линии на характеристике кнд и влияние на них различных факторов
- 3.3. Формирование программ управления трддсм
- Глава 4 характеристики одноконтурных и двухконтурных трд Характеристики одноконтурных трд
- 4.1. Скоростные характеристики трд
- 4.2. Высотные характеристики трд
- 4.3. Дроссельные характеристики трд
- Характеристики двухконтурных трд (трдд)
- 4.4. Скоростные характеристики трдд
- 4.5. Высотные характеристики трдд
- 4.6. Высотно-скоростные характеристики трдд
- 4.7. Дроссельные характеристики трдд
- Глава 5 рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигателей
- 5.1. Удельные параметры тВаД и их зависимость от
- Параметров рабочего процесса
- 5.2. Области применения и особенности термодинамического цикла тВаД
- 5.3. Совместная работа элементов турбовальных двигателей
- 5.4. Особенности регулирования вертолетных турбовальных двигателей
- 5.5. Программы управления вертолетных гтд на режимах ограничения
- 5.6. Высотные характеристики турбовальных двигателей
- 5.7. Дроссельные характеристики турбовальных двигателей
- 5.8. Климатические характеристики турбовальных двигателей
- 5.9. Схемы и основные параметры турбовинтовых и турбовинтовентиляторных двигателей
- 5.10. Оптимальное распределение работы цикла твд и тввд между винтом и реакцией газовой струи
- 5.11. Совместная работа элементов и программы управления твд
- 5.12. Эксплуатационные характеристики твд и тввд
- 5.13. Области применения тввд и перспективы их развития
- Глава 6 неустановившиеся режимы работы авиационных гтд
- 6.1. Требования к динамическим характеристикам гтд
- 6.2. Факторы, влияющие на переходные процессы в гтд. Гипотеза квазистационарности
- 6.3. Уравнения динамики роторов гтд
- 6.4. Факторы, влияющие на избыточную мощность турбины
- 6.5. Изменение параметров рабочего процесса при приемистости и сбросе газа в одновальныхтрд
- 6.6. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухвальных трд
- 6.7. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухконтурных трд
- 6.8. Запуск гтд на земле
- 6.9. Запуск гтд в полете
- Литература
- Часть 1. Основы теории элементов авиационных гтд Глава 1. Основные уравнения движения газа в двигателях и их элементах
- Глава 2. Тяга, мощность и удельные параметры авиационных двигателей
- Глава 3. Теория ступени компрессора гтд
- Глава 4. Многоступенчатые компрессоры
- Глава 5. Характеристики компрессоров и их регулирование
- Глава 6. Газовые турбины гтд
- Глава 7. Камеры сгорания и камеры смешения авиационных гтд
- Глава 8. Входные и выходные устройства авиационных силовых установок
- Часть 2.Термодинамический цикл, совместная работа элементов и характеристики авиационных силовых
- Глава 1. Термодинамический анализ рабочего процесса гтд прямой реакции
- Глава 2. Совместная работа элементов одновальных газогенераторов
- Глава 3. Совместная работа элементов и программы управления двухконтурных двигателей
- Глава 4. Характеристики одноконтурных и двухконтурных трд
- Глава 5. Рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигвтелей
- Глава 6. Неустановившиеся режимы работы авиационных гтд