4.4. Скоростные характеристики трдд
Характеристики ТРДД без смешения и со смешением потоков контуров при равных значениях степени двухконтурности почти не различаются между собой. Поэтому в последующем изложении, если нет оговорок, под аббревиатурой ТРДД будут подразумеваться как ТРДД, так и ТРДДсм.
Согласно определению, скоростной характеристикой ТРДД называется зависимость тяги Р и удельного расхода топлива Суд от скорости полета на заданной высоте полета при принятой программе управления.
Тяга равна произведению расхода воздуха Gв и удельной тяги Руд, т.е. Р = Gв Руд. Рассмотрим последовательно влияние на величины Gв и Руд, а следовательно, и на тягу Р, скорости полета V (и соответственно числа М полета – МН) на заданной высоте полета.
Зависимость расхода воздуха от скорости (числа М) полета определяется из соотношения
Gв = mв q(в)Fв. (4.5)
Условия полета оказывают влияние на Gв через давление и температуру воздуха на входе в двигатель, причем и. Величинаq(в) при этом изменяется в соответствии с изменением приведенной частоты вращения вентилятора ТРДД, поскольку q(в) = f (nв.пр), и определяется по рабочей линии на характеристике вентилятора.
На изменение Gв по скорости полета влияют расчетные значения иm0, а также характер их зависимостей от МН. Уравнение расхода для ТРДД в форме Gв = GвI (1+m), учитывая, что
GвI = const , (4.6)
можно привести к виду
Gв = const (1+m). (4.7)
Если принимать ≈const, то из формул (4.6) и (4.7) видно, что расход воздуха через внутренний контур ТРДДGвI пропорционален давлению ==вх, а расход воздуха через наружный контур GвII пропорционален (1+m), а следовательно, на него, помимо, влияет изменение степени двухконтурностиm.
Расход воздуха через внутренний контур ТРДД GвI при возрастании скорости полета V (и соответственно числа М полета) как и у ТРД увеличивается медленнее, чем повышается давление на входе в двигатель. Это объясняется уменьшениемс ростом температуры, поскольку при≈ const
GвI ≈ const=const. (4.8)
Чем более высокое расчетное значение имеет двигатель, тем интенсивнее снижаетсяпри увеличении, а это замедляет темп возрастания по скорости полета давления, а следовательно, иGвI.
Расход воздуха через наружный контур ТРДД GвII вследствие увеличения степени двухконтурности m (рис. 4.11 б) увеличивается с ростом скорости полета быстрее, чем расход воздуха через внутренний контур GвI, что в соответствии с (4.7) приводит (при одинаковых параметрах рабочего процесса) к более интенсивному увеличению Gв у двухконтурных двигателей по сравнению с одноконтурными, у которых m = 0.
На рис. 4.12 представлены зависимости =/от числа М полета для ТРД (m0 = 0) и для ТРДД, имеющих m0 = 1,0; 2,0; 4,0 при одинаковых параметрах рабочего процесса (= 24;= 1500 К) для высот полетаН = 0 и
Н = 11 км. Видно, что темп возрастания Gв по МН повышается с увеличением m0.
На рис. 4.13 показано влияние на характер изменения Gв расчетного значения суммарной степени повышения давления воздуха в компрессоре у ТРДД для значений, равных 15 и 30, приm0 = 4,0. С ростом , как и у ТРД, интенсивность ростаGв по МН замедляется, что вызвано более значительным снижением у них q(в) с ростом и с уменьшением.
Рис. 4.12. Изменение по МН при различных m0 |
Рис. 4.13. Изменение по МН при различных иm0 = 4 |
Зависимость удельной тяги ТРДД от скорости полета будем рассматривать для простоты при равенстве скоростей истечения газа из сопел кон туров,
т.е. при условии =. Это качественно приемлемо для ТРДД с раздельными контурами (из-за малого различия у них величини). Тогда удельная тяга для всех ГТД прямой реакции будет определяться по одной и той же формуле:
Руд = сс – V. (4.9)
Различие в схемах двигателей и режимах их работы будет влиять на Руд только через скорость истечения сс из реактивного сопла. Скорости сс зависят от располагаемой степени понижения давления в реактивном сопле с.расп и температуры газа перед соплом . У ТРДД значения скоростей истечения и удельных тяг при заданных параметрах рабочего процесса зависят от степени двухконтурности двигателяm. При увеличении m уменьшаются давление и температура перед соплами, а это приводит к снижению сс и Руд.
Таблица 4.1
№ п/п | Тип ГТД | , К | m0 | Руд=сс, | Суд, | |
1 | ТРД | 20 | 1500 | 0 | 900 | 0,09 |
2 | ТРДД | 20 | 1400 | 2,0 | 700 | 0,072 |
3 | ТРДД | 24 | 1500 | 4,0 | 500 | 0,056 |
4 | ТРДД | 28 | 1600 | 6,0 | 300 | 0,035 |
Рис. 4.14. Характер изменения Руд и по числу М полета у ГТД прямой реакции
Удельная тяга с ростом МН падает тем интенсивнее, чем меньшую скорость истечения ссо имеет двигатель в стендовых условиях. Качественный характер зависимостей Руд от МН для ГТД прямой реакции различных типов, приведенных в табл. 4.1, показан на рис. 4.14 а. На рис. 4.14 б дано относительное протекание от МН. За исходный для сравнения относительного протекания скоростных характеристик двигателей принят режим полета на высоте 11км с МН = 0,5.
Как видно, во всех случаях удельная тяга тем ниже и падает тем быстрее, чем меньшую скорость истечения в стендовых условиях имеет двигатель. Заштрихованная область на рис. 4.14 б относится к двухконтурным двигателям, причем ее нижняя граница соответствует ТРДД с высокими расчетными значениями m0 и , а верхняя граница относится к малым расчетным значениям этих величин.
Зависимость тяги двигателя от МН для ТРД и ТРДД, имеющих различные m0, для высоты Н = 11 км представлены на рис. 4.15. Как видно, у двигателей с высокими скоростями истечения газа из сопла возрастание расхода воздуха с ростом МН преобладает над снижением удельной тяги, и тяга двигателя с увеличением МН возрастает. Для ТРД характерно наличие в зависимости тяги от числа М полета трех участков: снижения тяги (из-за преобладающего влияния уменьшения Руд), затем ее увеличения (где рост Gв превышает падение Руд) и резкого падения тяги вплоть до «вырождения» двигателя (в области больших сверхзвуковых скоростей полета).
Видно также влияние на скоростные характеристики ТРДД расчетной
степени двухконтурности. При малых степенях двухконтурности характер
зависимости Р от МН является качественно таким же, как у ТРД (при m0 = 0), но с увеличением m0 преимущественную роль начинает играть снижение Руд с ростом МН. При высоких степенях двухконтурности, несмотря на значительное повышение Gв с увеличением МН (рис. 4.12), тяга все время снижается, вначале круто, затем более полого и снова круто (рис. 4.15).
Рис. 4.15. Сравнение скоростных характеристик ГТД прямой реакции
| Рис. 4.16. Характер изменения Суд по числу МН полета у ГТД прямой реакции |
Удельный расход топлива для ТРДД определяется из соотношения
Суд = . (4.10)
Как видно, он зависит от характера изменения удельной тяги Руд, степени двухконтурности m0 и количества подводимой теплоты на 1 кг воздуха в газогенераторном контуре Q. С ростом МН подводимая теплота Q уменьшается, а степень двухконтурности m возрастает, что благоприятно сказывается на Cуд. Но определяющую роль в зависимости Cуд от МН играет изменение Руд.
Из-за падения Руд при увеличении МН удельный расход топлива повышается. Это свойственно всем ГТД прямой реакции (рис. 4.16), но у ТРДД, у которых Руд снижается с ростом МН более интенсивно и тем значительнее, чем выше m0, величины Cуд круто увеличиваются и уже при скоростях полета, близких к скорости звука, ТРДД с высокими m0 по экономичности начинают проигрывать ТРД.
- Предисловие
- Введение
- Турбореактивный одноконтурный двигатель (трд)
- Турбореактивный двигатель с форсажом (трдф)
- Двухконтурный турбореактивный двигатель без смешения потоков (трдд)
- Двухконтурный турбореактивный двигатель со смешением потоков (трдДсм)
- Двигатели непрямой реакции
- Турбовальные двигатели (тВаД)
- Турбовинтовые двигатели (твд)
- Часть 1. Основы теории элементов авиационных гтд
- 1.1. Уравнение неразрывности
- 1.2. Уравнение сохранения энергии
- 1.3. Уравнение первого закона термодинамики
- 1.4. Обобщенное уравнение бернулли
- 1.5. Теорема эйлера об изменении количества движения
- Глава 2 тяга, мощность и удельные парамеры авиационных двигателей
- 2.1. Двигатель и силовая установка
- 2.2. Тяга реактивного двигателя
- 2.3. Эффективная тяга силовой установки
- 2.4. Внешнее сопротивление силовой установки и его составляющие
- 2.5. Удельные параметры авиационных гтд
- Удельные параметры гтд прямой реакции
- Удельные параметры гтд непрямой реакции
- Глава 3 теория ступени компрессора гтд
- 3.1. Назначение компрессоров гтд, их типы
- И основные требования к ним
- 3.2. Схема и принцип действия ступени осевого компрессора
- 3.3. Работа, затрачиваемая на вращение колеса ступени
- 3.4. Изображение процесса сжатия воздуха в ступени в p, V- и t,s- координатах
- 3.5. Основные параметры ступени компрессора
- Геометрические параметры
- Газодинамические и кинематические параметры
- 1. Степень повышения давления в ступени
- 2. Адиабатная работа сжатия воздуха в ступени
- 3. Кпд ступени
- 5. Числа Маха на входе в рк и на.
- 6. Коэффициент расхода
- 7. Коэффициент адиабатного напора
- 8. Степень реактивности ступени.
- 3.6. Условия совместной работы элементов ступени, расположенных на различных радиусах
- 3.7. Профилирование ступеней по закону постоянства циркуляции
- 3.8. Параметры и характеристики компрессорных решеток профилей
- Параметры профиля и решетки профилей
- Характеристики решеток профилей
- Влияние чисел м и Re на характеристики компрессорных решеток
- 3.9. Особенности течения воздуха в лопаточных венцах осевого компрессора
- 3.10. Особенности трансзвуковых и сверхзвуковых ступеней осевого компрессора
- 3.11. Особенности вентиляторных ступеней трдд с большой степенью двухконтурности
- 3.12. Схема и особенности работы центробежной ступени компрессора
- 3.13. Работа вращения колеса и основные параметры центробежной ступени
- Глава 4
- 4.1. Основные параметры многоступенчатого компрессора (каскада) и их связь с параметрами ступеней
- 4.2. Формы проточной части осевого компрессора (каскада)
- 4.3. Распределение работы сжатия воздуха между ступенями компрессора (каскада)
- Глава 5 характеристики компрессоров и их регулирование
- 5.1. Общие представления о характеристиках компрессоров и методах их определения
- 5.2. Применение теории подобия к построению характеристик компрессора
- 5.3. Характеристики ступени осевого компрессора
- 5.4. Срывные режимы работы ступени
- 5.5. Характеристики нерегулируемых многоступенчатых компрессоров Совместная работа ступеней в многоступенчатом компрессоре
- Граница устойчивой работы многоступенчатого компрессора
- 5.6. Срывные и неустойчивые режимы работы многоступенчатых компрессоров
- 5.7. Рабочие режимы и запас устойчивости компрессора в системе гтд
- 5.8.Задачи и способы регулирования компрессоров гтд
- Перепуск воздуха
- Поворот лопаток направляющих аппаратов
- Разделение компрессора на каскады (группы ступеней)
- Глава 6 газовые турбины гтд
- 6.1. Назначение турбин гтд и основные
- Требования к ним
- 6.2. Схема и принцип работы ступени турбины
- 6.3. Работа газа на окружности колеса ступени
- 6.4. Изображение процесса расширения газа в ступени в p,V- и I,s- координатах
- 6.5. Основные параметры ступени турбины Геометрические параметры
- Газодинамические параметры
- Кинематические параметры
- 6.6. Потери в ступени турбины и их зависимость от различных факторов
- Потери в ступени турбины
- Влияние параметра u /c1 на кпд ступени
- 6.7. Основные параметры многоступенчатой турбины и их связь с параметрами её ступеней
- 6.8. Способы представления характеристик ступени газовой турбины
- 6.9.Характеристики ступени турбины
- Характеристики ступени турбины
- Глава 7 камеры сгорания гтд
- 7.1. Назначение камер сгорания и основные
- Требования к ним
- 7.2. Основные параметры камер сгорания гтд
- 7.3. Основные закономерности процесса горения топлива
- 7.4. Типы основных камер сгорания гтд и организация процесса горения в них
- 7.5. Характеристики камер сгорания авиационных гтд
- 7.6. Потери полного давления в камерах сгорания гтд
- 7.7. Определение расхода топлива в камерах сгорания
- 7.8. Назначение камер смешения и основные требования к ним
- 7.9. Схемы камер смешения и картина течения в них
- 7.10. Расчет параметров потока за камерой смешения
- Глава 8 входные и выходные устройства авиационных силовых установок
- 8.1.Типы входных устройств и их классификация
- 8.2. Основные параметры входных устройств
- 8.3. Особенности дозвуковых ходных устройств
- 8.4. Организация рабочего процесса в сверхзвуковых входных устройствах внешнего сжатия
- 8.5. Назначение выходных устройств и предъявляемые к ним требования
- 8.6.Схемы, основные параметры и режимы работы дозвуковых выходных устройств
- Скорость истечения газа из суживающегося сопла и режимы его работы
- 8.7. Потери в выходных устройствах и способы их оценки
- 8.8.Устройства реверса тяги
- Турбовальных гтд вертолетов
- Часть 2. Термодинамический цикл, совместная
- 1.2. Зависимость работы и внутреннего кпд реального цикла от π и δ
- Зависимость работы и внутреннего кпд цикла
- Оптимальная степень повышения давления в компрессоре
- Зависимость работы и внутреннего кпд цикла от степени подогрева воздуха δ.
- 1.4. Тяговая работа и тяговый кпд гтд прямой реакции
- 1.5. Полный кпд гтд прямой реакции
- 1.6. Оптимальное распределение работы цикла между контурами в трдд без смешения потоков
- 1.7. Оптимальное значение степени повышения давления в вентиляторе трдд со смешением потоков
- 1.8. Связь удельных параметров трд и трдд с параметрами рабочего процесса
- 1.9. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени повышения давления в цикле
- Зависимость Руд и Судот π для одноконтурных двигателей
- Зависимость Руд и Суд от π для двухконтурных двигателей
- 1.10. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени подогрева рабочего тела в цикле
- Зависимость Руд и СудотΔ для двухконтурных двигателей
- Совместная работа элементов одновальных газогенераторов
- 2.1. Функциональные модули авиационных силовых становок
- 2.2. Управляемые параметры и управляющие факторы
- 2.3. Совместная работа элементов одновальных газогенераторов и одновальных трд
- 2.4. Рабочие линии на характеристике компрессора одновального газогенератора
- 2.5. Критериальные характеристики одновальных газогенераторов
- 2.6. Программы управления одновальных гг и
- Одновальных трд, управляемых по одному параметру
- Рассогласование ступеней компрессора в одновальном гг
- (И одновальном трд)
- Программы управдения одновальных гг и одновальных трд
- Глава 3 Совместная работа элементов и программы управления двухконтурных двигателей
- 3.1. Совместная работа элементов трдДсм
- 3.2. Рабочие линии на характеристике кнд и влияние на них различных факторов
- 3.3. Формирование программ управления трддсм
- Глава 4 характеристики одноконтурных и двухконтурных трд Характеристики одноконтурных трд
- 4.1. Скоростные характеристики трд
- 4.2. Высотные характеристики трд
- 4.3. Дроссельные характеристики трд
- Характеристики двухконтурных трд (трдд)
- 4.4. Скоростные характеристики трдд
- 4.5. Высотные характеристики трдд
- 4.6. Высотно-скоростные характеристики трдд
- 4.7. Дроссельные характеристики трдд
- Глава 5 рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигателей
- 5.1. Удельные параметры тВаД и их зависимость от
- Параметров рабочего процесса
- 5.2. Области применения и особенности термодинамического цикла тВаД
- 5.3. Совместная работа элементов турбовальных двигателей
- 5.4. Особенности регулирования вертолетных турбовальных двигателей
- 5.5. Программы управления вертолетных гтд на режимах ограничения
- 5.6. Высотные характеристики турбовальных двигателей
- 5.7. Дроссельные характеристики турбовальных двигателей
- 5.8. Климатические характеристики турбовальных двигателей
- 5.9. Схемы и основные параметры турбовинтовых и турбовинтовентиляторных двигателей
- 5.10. Оптимальное распределение работы цикла твд и тввд между винтом и реакцией газовой струи
- 5.11. Совместная работа элементов и программы управления твд
- 5.12. Эксплуатационные характеристики твд и тввд
- 5.13. Области применения тввд и перспективы их развития
- Глава 6 неустановившиеся режимы работы авиационных гтд
- 6.1. Требования к динамическим характеристикам гтд
- 6.2. Факторы, влияющие на переходные процессы в гтд. Гипотеза квазистационарности
- 6.3. Уравнения динамики роторов гтд
- 6.4. Факторы, влияющие на избыточную мощность турбины
- 6.5. Изменение параметров рабочего процесса при приемистости и сбросе газа в одновальныхтрд
- 6.6. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухвальных трд
- 6.7. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухконтурных трд
- 6.8. Запуск гтд на земле
- 6.9. Запуск гтд в полете
- Литература
- Часть 1. Основы теории элементов авиационных гтд Глава 1. Основные уравнения движения газа в двигателях и их элементах
- Глава 2. Тяга, мощность и удельные параметры авиационных двигателей
- Глава 3. Теория ступени компрессора гтд
- Глава 4. Многоступенчатые компрессоры
- Глава 5. Характеристики компрессоров и их регулирование
- Глава 6. Газовые турбины гтд
- Глава 7. Камеры сгорания и камеры смешения авиационных гтд
- Глава 8. Входные и выходные устройства авиационных силовых установок
- Часть 2.Термодинамический цикл, совместная работа элементов и характеристики авиационных силовых
- Глава 1. Термодинамический анализ рабочего процесса гтд прямой реакции
- Глава 2. Совместная работа элементов одновальных газогенераторов
- Глава 3. Совместная работа элементов и программы управления двухконтурных двигателей
- Глава 4. Характеристики одноконтурных и двухконтурных трд
- Глава 5. Рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигвтелей
- Глава 6. Неустановившиеся режимы работы авиационных гтд