6.6. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухвальных трд
В двухвальном ТРД (двухвальном газогенераторе) можно выделить компрессор высокого давления и турбину высокого давления, образующие ротор высокого давления (РВД), и расположенную между ними камеру сгорания
(рис. 6.9). Вместе они образуют газогенератор высокого давления (ГГ ВД). Он содержит те же элементы, что и одновальный ГГ. Поэтому условия совместной работы элементов ГГ ВД, его характеристики и протекание в нем процессов на неустановившихся режимах работы по существу ничем не отличаются от рассмотренных выше. Некоторые особенности связаны только с тем, что обычно расчетное значение (и соответственно момент инерции ротора ) значительно меньше, чем в одновальном ГГ.
Рис. 6.9. Двухвальный ТРД
Более быстро раскручивается тот ротор, который имеет меньший момент инерции, более высокую относительную частоту вращения и бóльшую величину Nт в процессе приемистости.
На расчетном режиме работы двигателя обычно «скольжение» роторов S0 = составляет 1,2…1,3. При медленном дросселировании двигателя (на установившихся режимах его работы) «скольжение» роторов, как известно, увеличивается, как показано на рис.6.10 а. Это приводит к тому, что относительная частота вращения на режиме МГ у РВД оказывается значительно большей, чему ротора низкого давления (РНД). Как показывает статистика, = 0,3…0,4, тогда как= 0,5…0,65. Кроме того, момент инерциив двухвальных ГГ обычно оказывается больше, чем. Поэтому практически во всех двухвальных ГГ в процессе приемистости раскрутка РВД происходит с опережением по сравнению с раскруткой РНД. В результате скольжение роторов при приемистости оказываетсябольшим, чем на установившихся режимах (рис. 6.10 а). При сбросе газа, наоборот, частота вращения РВД вследствие меньшего момента инерции снижается быстрее, чем частота вращения РНД, и скольжение оказывается меньше, чем на установившихся режимах.
а) | б) |
Рис. 6.10. Приемистость и сброс газа двухвального ТРД: а) изменение скольжения роторов; б) расположение рабочих линий на характеристике КНД |
Расположение рабочих линий на характеристике КВД на неустановившихся режимах остается таким же, как у одновального ТРД (рис. 6.3). Рабочая линия на режимах приемистости располагается левее рабочей линии установившихся режимов. Но существенно изменяются условия работы КНД. Раскручивающийся более быстро КВД просасывает в ускоренном темпе поток воздуха, проходящий через КНД. В результате в процессе приемистости рабочая линия на характеристике КНД располагается правее линии установившегося режима, кроме начального момента раскрутки, когда еще роторы сохраняют исходное значение скольжения, присущее установившимся режимам, а подача топлива уже увеличена (рис. 6.10 б). Чем интенсивнее осуществляется процесс приемистости, тем значительнее рабочая линия на характеристике КВД приближается, а на характеристике КНД удаляется от границ их устойчивых режимов работы. Поэтому факторами, ограничивающими время приемистости, являются запас устойчивости КВД и величина предельно допустимой температуры . Запас устойчивости КНД в данном случае велик и не лимитируетtп.
Преимущество двухвальной схемы ГГ здесь проявляется в том, что при одинаковых с одновальным ГГ значениях у двухвального ГГполучается значительно ниже. По этой причине рабочая линия для установившихся режимов удаляетсяот границы устойчивых режимов на характеристике КВД более значительно, чем на характеристике компрессора одновального ГГ. За счет этого возрастают запасы устойчивости КВД, которые могут быть использованы в процессе раскрутки роторов для увеличения избытков топлива вплоть до выхода на ограничение по. Это совместно с другими отмеченными выше факторами приводит к тому, что время приемистости ТРД с двухвальными ГГ обычно оказывается заметно меньше, чем у ТРД с одновальным ГГ, имеющим такие же расчетные параметры.
При сбросе газа рабочая линия на характеристике КВД протекает таким же образом, как у одновального ГГ (рис. 6.3). Но КВД (вследствие быстрого снижения частоты вращения и соответственно расхода воздуха через него) оказывает дросселирующее воздействие на поток воздуха, протекающий через КНД, и линия сброса газа отклоняется от рабочей линии установившегося режима в сторону границы устойчивых режимов работы КНД (рис. 6.10).
В связи с таким характером протекания линии сброса газа возникает область режимов, где становятся опасным быстрый сброс газа и применение «встречной приемистости». При резком сбросе газа, а также при «встречной приемистости» может произойти потеря устойчивости КНД. Режим «встречной приемистости» может применяться при необходимости срочного ухода на второй круг при посадке самолета.
Заметим также, что в условиях старта и при малых скоростях полета перепад давлений в выходном сопле ТРД на режиме малого газа становится существенно докритическим, в результате чего степень понижения давления в ТНД снижается, а скольжение роторов дополнительно возрастает, что обуславливает еще большее «отставание» РНД по отношению к РВД в процессе приемистости.
Все сказанное выше о процессах приемистости и сброса газа в одновальных и двухвальных ТРД(Ф) соответственно с одновальным и двухвальным ГГ полностью относится и к одноконтурным ГТД других схем с такими ГГ, т.е. к ТВД, ТВВД и ТВаД.
У ТВД с общей турбиной (в которых нельзя выделить ГГ) снижение режима работы двигателя происходит, как уже отмечалось, за счет уменьшения шага винта при сохранении постоянной частоты вращения (кроме некоторого снижения частоты вращения при переходе к земному малому газу после установки лопастей ВИШ на упор минимального шага). Поэтому подача топлива при приемистости ограничивается в таких ГТД только темпом поворота лопастей ВИШ (чтобы не было заброса частоты вращения вала двигателя).
- Предисловие
- Введение
- Турбореактивный одноконтурный двигатель (трд)
- Турбореактивный двигатель с форсажом (трдф)
- Двухконтурный турбореактивный двигатель без смешения потоков (трдд)
- Двухконтурный турбореактивный двигатель со смешением потоков (трдДсм)
- Двигатели непрямой реакции
- Турбовальные двигатели (тВаД)
- Турбовинтовые двигатели (твд)
- Часть 1. Основы теории элементов авиационных гтд
- 1.1. Уравнение неразрывности
- 1.2. Уравнение сохранения энергии
- 1.3. Уравнение первого закона термодинамики
- 1.4. Обобщенное уравнение бернулли
- 1.5. Теорема эйлера об изменении количества движения
- Глава 2 тяга, мощность и удельные парамеры авиационных двигателей
- 2.1. Двигатель и силовая установка
- 2.2. Тяга реактивного двигателя
- 2.3. Эффективная тяга силовой установки
- 2.4. Внешнее сопротивление силовой установки и его составляющие
- 2.5. Удельные параметры авиационных гтд
- Удельные параметры гтд прямой реакции
- Удельные параметры гтд непрямой реакции
- Глава 3 теория ступени компрессора гтд
- 3.1. Назначение компрессоров гтд, их типы
- И основные требования к ним
- 3.2. Схема и принцип действия ступени осевого компрессора
- 3.3. Работа, затрачиваемая на вращение колеса ступени
- 3.4. Изображение процесса сжатия воздуха в ступени в p, V- и t,s- координатах
- 3.5. Основные параметры ступени компрессора
- Геометрические параметры
- Газодинамические и кинематические параметры
- 1. Степень повышения давления в ступени
- 2. Адиабатная работа сжатия воздуха в ступени
- 3. Кпд ступени
- 5. Числа Маха на входе в рк и на.
- 6. Коэффициент расхода
- 7. Коэффициент адиабатного напора
- 8. Степень реактивности ступени.
- 3.6. Условия совместной работы элементов ступени, расположенных на различных радиусах
- 3.7. Профилирование ступеней по закону постоянства циркуляции
- 3.8. Параметры и характеристики компрессорных решеток профилей
- Параметры профиля и решетки профилей
- Характеристики решеток профилей
- Влияние чисел м и Re на характеристики компрессорных решеток
- 3.9. Особенности течения воздуха в лопаточных венцах осевого компрессора
- 3.10. Особенности трансзвуковых и сверхзвуковых ступеней осевого компрессора
- 3.11. Особенности вентиляторных ступеней трдд с большой степенью двухконтурности
- 3.12. Схема и особенности работы центробежной ступени компрессора
- 3.13. Работа вращения колеса и основные параметры центробежной ступени
- Глава 4
- 4.1. Основные параметры многоступенчатого компрессора (каскада) и их связь с параметрами ступеней
- 4.2. Формы проточной части осевого компрессора (каскада)
- 4.3. Распределение работы сжатия воздуха между ступенями компрессора (каскада)
- Глава 5 характеристики компрессоров и их регулирование
- 5.1. Общие представления о характеристиках компрессоров и методах их определения
- 5.2. Применение теории подобия к построению характеристик компрессора
- 5.3. Характеристики ступени осевого компрессора
- 5.4. Срывные режимы работы ступени
- 5.5. Характеристики нерегулируемых многоступенчатых компрессоров Совместная работа ступеней в многоступенчатом компрессоре
- Граница устойчивой работы многоступенчатого компрессора
- 5.6. Срывные и неустойчивые режимы работы многоступенчатых компрессоров
- 5.7. Рабочие режимы и запас устойчивости компрессора в системе гтд
- 5.8.Задачи и способы регулирования компрессоров гтд
- Перепуск воздуха
- Поворот лопаток направляющих аппаратов
- Разделение компрессора на каскады (группы ступеней)
- Глава 6 газовые турбины гтд
- 6.1. Назначение турбин гтд и основные
- Требования к ним
- 6.2. Схема и принцип работы ступени турбины
- 6.3. Работа газа на окружности колеса ступени
- 6.4. Изображение процесса расширения газа в ступени в p,V- и I,s- координатах
- 6.5. Основные параметры ступени турбины Геометрические параметры
- Газодинамические параметры
- Кинематические параметры
- 6.6. Потери в ступени турбины и их зависимость от различных факторов
- Потери в ступени турбины
- Влияние параметра u /c1 на кпд ступени
- 6.7. Основные параметры многоступенчатой турбины и их связь с параметрами её ступеней
- 6.8. Способы представления характеристик ступени газовой турбины
- 6.9.Характеристики ступени турбины
- Характеристики ступени турбины
- Глава 7 камеры сгорания гтд
- 7.1. Назначение камер сгорания и основные
- Требования к ним
- 7.2. Основные параметры камер сгорания гтд
- 7.3. Основные закономерности процесса горения топлива
- 7.4. Типы основных камер сгорания гтд и организация процесса горения в них
- 7.5. Характеристики камер сгорания авиационных гтд
- 7.6. Потери полного давления в камерах сгорания гтд
- 7.7. Определение расхода топлива в камерах сгорания
- 7.8. Назначение камер смешения и основные требования к ним
- 7.9. Схемы камер смешения и картина течения в них
- 7.10. Расчет параметров потока за камерой смешения
- Глава 8 входные и выходные устройства авиационных силовых установок
- 8.1.Типы входных устройств и их классификация
- 8.2. Основные параметры входных устройств
- 8.3. Особенности дозвуковых ходных устройств
- 8.4. Организация рабочего процесса в сверхзвуковых входных устройствах внешнего сжатия
- 8.5. Назначение выходных устройств и предъявляемые к ним требования
- 8.6.Схемы, основные параметры и режимы работы дозвуковых выходных устройств
- Скорость истечения газа из суживающегося сопла и режимы его работы
- 8.7. Потери в выходных устройствах и способы их оценки
- 8.8.Устройства реверса тяги
- Турбовальных гтд вертолетов
- Часть 2. Термодинамический цикл, совместная
- 1.2. Зависимость работы и внутреннего кпд реального цикла от π и δ
- Зависимость работы и внутреннего кпд цикла
- Оптимальная степень повышения давления в компрессоре
- Зависимость работы и внутреннего кпд цикла от степени подогрева воздуха δ.
- 1.4. Тяговая работа и тяговый кпд гтд прямой реакции
- 1.5. Полный кпд гтд прямой реакции
- 1.6. Оптимальное распределение работы цикла между контурами в трдд без смешения потоков
- 1.7. Оптимальное значение степени повышения давления в вентиляторе трдд со смешением потоков
- 1.8. Связь удельных параметров трд и трдд с параметрами рабочего процесса
- 1.9. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени повышения давления в цикле
- Зависимость Руд и Судот π для одноконтурных двигателей
- Зависимость Руд и Суд от π для двухконтурных двигателей
- 1.10. Зависимость удельной тяги и удельного расхода топлива трд и трдд от степени подогрева рабочего тела в цикле
- Зависимость Руд и СудотΔ для двухконтурных двигателей
- Совместная работа элементов одновальных газогенераторов
- 2.1. Функциональные модули авиационных силовых становок
- 2.2. Управляемые параметры и управляющие факторы
- 2.3. Совместная работа элементов одновальных газогенераторов и одновальных трд
- 2.4. Рабочие линии на характеристике компрессора одновального газогенератора
- 2.5. Критериальные характеристики одновальных газогенераторов
- 2.6. Программы управления одновальных гг и
- Одновальных трд, управляемых по одному параметру
- Рассогласование ступеней компрессора в одновальном гг
- (И одновальном трд)
- Программы управдения одновальных гг и одновальных трд
- Глава 3 Совместная работа элементов и программы управления двухконтурных двигателей
- 3.1. Совместная работа элементов трдДсм
- 3.2. Рабочие линии на характеристике кнд и влияние на них различных факторов
- 3.3. Формирование программ управления трддсм
- Глава 4 характеристики одноконтурных и двухконтурных трд Характеристики одноконтурных трд
- 4.1. Скоростные характеристики трд
- 4.2. Высотные характеристики трд
- 4.3. Дроссельные характеристики трд
- Характеристики двухконтурных трд (трдд)
- 4.4. Скоростные характеристики трдд
- 4.5. Высотные характеристики трдд
- 4.6. Высотно-скоростные характеристики трдд
- 4.7. Дроссельные характеристики трдд
- Глава 5 рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигателей
- 5.1. Удельные параметры тВаД и их зависимость от
- Параметров рабочего процесса
- 5.2. Области применения и особенности термодинамического цикла тВаД
- 5.3. Совместная работа элементов турбовальных двигателей
- 5.4. Особенности регулирования вертолетных турбовальных двигателей
- 5.5. Программы управления вертолетных гтд на режимах ограничения
- 5.6. Высотные характеристики турбовальных двигателей
- 5.7. Дроссельные характеристики турбовальных двигателей
- 5.8. Климатические характеристики турбовальных двигателей
- 5.9. Схемы и основные параметры турбовинтовых и турбовинтовентиляторных двигателей
- 5.10. Оптимальное распределение работы цикла твд и тввд между винтом и реакцией газовой струи
- 5.11. Совместная работа элементов и программы управления твд
- 5.12. Эксплуатационные характеристики твд и тввд
- 5.13. Области применения тввд и перспективы их развития
- Глава 6 неустановившиеся режимы работы авиационных гтд
- 6.1. Требования к динамическим характеристикам гтд
- 6.2. Факторы, влияющие на переходные процессы в гтд. Гипотеза квазистационарности
- 6.3. Уравнения динамики роторов гтд
- 6.4. Факторы, влияющие на избыточную мощность турбины
- 6.5. Изменение параметров рабочего процесса при приемистости и сбросе газа в одновальныхтрд
- 6.6. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухвальных трд
- 6.7. Изменение параметров рабочего процесса при приемистости и сбросе газа в двухконтурных трд
- 6.8. Запуск гтд на земле
- 6.9. Запуск гтд в полете
- Литература
- Часть 1. Основы теории элементов авиационных гтд Глава 1. Основные уравнения движения газа в двигателях и их элементах
- Глава 2. Тяга, мощность и удельные параметры авиационных двигателей
- Глава 3. Теория ступени компрессора гтд
- Глава 4. Многоступенчатые компрессоры
- Глава 5. Характеристики компрессоров и их регулирование
- Глава 6. Газовые турбины гтд
- Глава 7. Камеры сгорания и камеры смешения авиационных гтд
- Глава 8. Входные и выходные устройства авиационных силовых установок
- Часть 2.Термодинамический цикл, совместная работа элементов и характеристики авиационных силовых
- Глава 1. Термодинамический анализ рабочего процесса гтд прямой реакции
- Глава 2. Совместная работа элементов одновальных газогенераторов
- Глава 3. Совместная работа элементов и программы управления двухконтурных двигателей
- Глава 4. Характеристики одноконтурных и двухконтурных трд
- Глава 5. Рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигвтелей
- Глава 6. Неустановившиеся режимы работы авиационных гтд